NP-Complete Problems

Computer Algebra, Combinatorics, and Complexity: Hilbert’s Nullstellensatz and NP-complete Problems

[1]  Gerhard Koester,et al.  On 4-critical planar graphs with high edge density , 1991, Discret. Math..

[2]  Christopher J. Hillar,et al.  Algebraic characterization of uniquely vertex colorable graphs , 2008, J. Comb. Theory, Ser. B.

[3]  László Lovász,et al.  Stable sets and polynomials , 1994, Discret. Math..

[4]  Joseph C. Culberson,et al.  Frozen development in graph coloring , 2001, Theor. Comput. Sci..

[5]  Yu. V. Matiyasevich Some Algebraic Methods for Calculating the Number of Colorings of a Graph , 2004 .

[6]  Sheng Liu,et al.  Using Hajós' Construction to Generate Hard Graph 3-Colorability Instances , 2006, AISC.

[7]  Rafael H. Villarreal,et al.  On the Ideal Theory of Graphs , 1994 .

[8]  W. Brownawell Bounds for the degrees in the Nullstellensatz , 1987 .

[9]  Shuo-Yen Robert Li,et al.  Independence numbers of graphs and generators of ideals , 1981, Comb..

[10]  Christophe Picouleau Complexity of the Hamiltonian Cycle in Regular Graph Problem , 1994, Theor. Comput. Sci..

[11]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[12]  Toniann Pitassi,et al.  Exponential Lower Bounds for the Tree-Like Hajós Calculus , 1995, Inf. Process. Lett..

[13]  D. Lazard Algèbre linéaire sur $K[X_1,\dots,X_n]$ et élimination , 1977 .

[14]  Romulus Dan Vlasie Systematic generation of very hard cases for graph 3-colorability , 1995, Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence.

[15]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[16]  Noga Alon,et al.  Colorings and orientations of graphs , 1992, Comb..

[17]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[18]  H. O. Foulkes Abstract Algebra , 1967, Nature.

[19]  Martin E. Dyer,et al.  On Markov Chains for Independent Sets , 2000, J. Algorithms.

[20]  Russell Impagliazzo,et al.  Lower bounds for the polynomial calculus and the Gröbner basis algorithm , 1999, computational complexity.

[21]  Monique Laurent,et al.  Semidefinite Characterization and Computation of Zero-Dimensional Real Radical Ideals , 2008, Found. Comput. Math..

[22]  A. Meyer,et al.  The complexity of the word problems for commutative semigroups and polynomial ideals , 1982 .

[23]  W. Schnyder Planar graphs and poset dimension , 1989 .

[24]  Shmuel Onn Nowhere-zero flow polynomials , 2004, J. Comb. Theory, Ser. A.

[25]  Michal Mnuk Representing Graph Properties by Polynomial Ideals , 2001 .

[26]  Ian Holyer,et al.  The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..

[27]  Isabel Méndez-Díaz,et al.  A Branch-and-Cut algorithm for graph coloring , 2006, Discret. Appl. Math..

[28]  Giovanni Pistone,et al.  Computational commutative algebra in discrete statistics , 2000 .

[29]  Samuel R. Buss,et al.  Good degree bounds on Nullstellensatz refutations of the induction principle , 1996, Proceedings of Computational Complexity (Formerly Structure in Complexity Theory).

[30]  Tad Hogg,et al.  A New Look at the Easy-Hard-Easy Pattern of Combinatorial Search Difficulty , 1997, J. Artif. Intell. Res..

[31]  Zhibo Chen,et al.  On uniquely 3-colorable graphs , 1993, Discret. Math..

[32]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[33]  D. Loera,et al.  Gröbner bases and graph colorings. , 1995 .

[34]  J. Kollár Sharp effective Nullstellensatz , 1988 .

[35]  Monique Laurent,et al.  Semidefinite representations for finite varieties , 2007, Math. Program..

[36]  Kazunori Mizuno,et al.  Constructive generation of very hard 3-colorability instances , 2008, Discret. Appl. Math..

[37]  Klaus G. Fischer,et al.  Symmetric polynomials and Hall's theorem , 1988, Discret. Math..

[38]  D. Bayer The division algorithm and the hilbert scheme , 1982 .

[39]  David A. Cox,et al.  Using Algebraic Geometry , 1998 .

[40]  D. Hilbert Ueber die vollen Invariantensysteme , .

[41]  Peter L. Montgomery,et al.  A Block Lanczos Algorithm for Finding Dependencies Over GF(2) , 1995, EUROCRYPT.

[42]  Guoping Jin,et al.  Triangle-free four-chromatic graphs , 1995, Discret. Math..

[43]  Pablo A. Parrilo,et al.  Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..

[44]  Noga Alon Combinatorial Nullstellensatz , 1999, Combinatorics, Probability and Computing.

[45]  Miguel F. Anjos,et al.  Semidenite Optimization Approaches for Satisabilit y and Maximum-Satisabilit y Problems , 2005 .

[46]  Daniel Brélaz,et al.  New methods to color the vertices of a graph , 1979, CACM.

[47]  Jean B. Lasserre,et al.  Polynomials nonnegative on a grid and discrete optimization , 2001 .

[48]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[49]  Christos H. Papadimitriou,et al.  Computational complexity , 1993 .

[50]  Michael Sipser,et al.  Introduction to the Theory of Computation , 1996, SIGA.

[51]  M. Yannakakis Expressing combinatorial optimization problems by linear programs , 1991, Symposium on the Theory of Computing.

[52]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.