NP-Complete Problems
暂无分享,去创建一个
[1] Gerhard Koester,et al. On 4-critical planar graphs with high edge density , 1991, Discret. Math..
[2] Christopher J. Hillar,et al. Algebraic characterization of uniquely vertex colorable graphs , 2008, J. Comb. Theory, Ser. B.
[3] László Lovász,et al. Stable sets and polynomials , 1994, Discret. Math..
[4] Joseph C. Culberson,et al. Frozen development in graph coloring , 2001, Theor. Comput. Sci..
[5] Yu. V. Matiyasevich. Some Algebraic Methods for Calculating the Number of Colorings of a Graph , 2004 .
[6] Sheng Liu,et al. Using Hajós' Construction to Generate Hard Graph 3-Colorability Instances , 2006, AISC.
[7] Rafael H. Villarreal,et al. On the Ideal Theory of Graphs , 1994 .
[8] W. Brownawell. Bounds for the degrees in the Nullstellensatz , 1987 .
[9] Shuo-Yen Robert Li,et al. Independence numbers of graphs and generators of ideals , 1981, Comb..
[10] Christophe Picouleau. Complexity of the Hamiltonian Cycle in Regular Graph Problem , 1994, Theor. Comput. Sci..
[11] David K. Smith. Theory of Linear and Integer Programming , 1987 .
[12] Toniann Pitassi,et al. Exponential Lower Bounds for the Tree-Like Hajós Calculus , 1995, Inf. Process. Lett..
[13] D. Lazard. Algèbre linéaire sur $K[X_1,\dots,X_n]$ et élimination , 1977 .
[14] Romulus Dan Vlasie. Systematic generation of very hard cases for graph 3-colorability , 1995, Proceedings of 7th IEEE International Conference on Tools with Artificial Intelligence.
[15] Rajeev Motwani,et al. Randomized Algorithms , 1995, SIGA.
[16] Noga Alon,et al. Colorings and orientations of graphs , 1992, Comb..
[17] Joachim von zur Gathen,et al. Modern Computer Algebra , 1998 .
[18] H. O. Foulkes. Abstract Algebra , 1967, Nature.
[19] Martin E. Dyer,et al. On Markov Chains for Independent Sets , 2000, J. Algorithms.
[20] Russell Impagliazzo,et al. Lower bounds for the polynomial calculus and the Gröbner basis algorithm , 1999, computational complexity.
[21] Monique Laurent,et al. Semidefinite Characterization and Computation of Zero-Dimensional Real Radical Ideals , 2008, Found. Comput. Math..
[22] A. Meyer,et al. The complexity of the word problems for commutative semigroups and polynomial ideals , 1982 .
[23] W. Schnyder. Planar graphs and poset dimension , 1989 .
[24] Shmuel Onn. Nowhere-zero flow polynomials , 2004, J. Comb. Theory, Ser. A.
[25] Michal Mnuk. Representing Graph Properties by Polynomial Ideals , 2001 .
[26] Ian Holyer,et al. The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..
[27] Isabel Méndez-Díaz,et al. A Branch-and-Cut algorithm for graph coloring , 2006, Discret. Appl. Math..
[28] Giovanni Pistone,et al. Computational commutative algebra in discrete statistics , 2000 .
[29] Samuel R. Buss,et al. Good degree bounds on Nullstellensatz refutations of the induction principle , 1996, Proceedings of Computational Complexity (Formerly Structure in Complexity Theory).
[30] Tad Hogg,et al. A New Look at the Easy-Hard-Easy Pattern of Combinatorial Search Difficulty , 1997, J. Artif. Intell. Res..
[31] Zhibo Chen,et al. On uniquely 3-colorable graphs , 1993, Discret. Math..
[32] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[33] D. Loera,et al. Gröbner bases and graph colorings. , 1995 .
[34] J. Kollár. Sharp effective Nullstellensatz , 1988 .
[35] Monique Laurent,et al. Semidefinite representations for finite varieties , 2007, Math. Program..
[36] Kazunori Mizuno,et al. Constructive generation of very hard 3-colorability instances , 2008, Discret. Appl. Math..
[37] Klaus G. Fischer,et al. Symmetric polynomials and Hall's theorem , 1988, Discret. Math..
[38] D. Bayer. The division algorithm and the hilbert scheme , 1982 .
[39] David A. Cox,et al. Using Algebraic Geometry , 1998 .
[40] D. Hilbert. Ueber die vollen Invariantensysteme , .
[41] Peter L. Montgomery,et al. A Block Lanczos Algorithm for Finding Dependencies Over GF(2) , 1995, EUROCRYPT.
[42] Guoping Jin,et al. Triangle-free four-chromatic graphs , 1995, Discret. Math..
[43] Pablo A. Parrilo,et al. Semidefinite programming relaxations for semialgebraic problems , 2003, Math. Program..
[44] Noga Alon. Combinatorial Nullstellensatz , 1999, Combinatorics, Probability and Computing.
[45] Miguel F. Anjos,et al. Semidenite Optimization Approaches for Satisabilit y and Maximum-Satisabilit y Problems , 2005 .
[46] Daniel Brélaz,et al. New methods to color the vertices of a graph , 1979, CACM.
[47] Jean B. Lasserre,et al. Polynomials nonnegative on a grid and discrete optimization , 2001 .
[48] David A. Cox,et al. Ideals, Varieties, and Algorithms , 1997 .
[49] Christos H. Papadimitriou,et al. Computational complexity , 1993 .
[50] Michael Sipser,et al. Introduction to the Theory of Computation , 1996, SIGA.
[51] M. Yannakakis. Expressing combinatorial optimization problems by linear programs , 1991, Symposium on the Theory of Computing.
[52] Peter C. Cheeseman,et al. Where the Really Hard Problems Are , 1991, IJCAI.