EWMA Control Chart Performance with Estimated Parameters under Non‐normality

Exponentially weighted moving average (EWMA) control charts can be designed to detect shifts in the underlying process parameters quickly while enjoying robustness to non-normality. Past studies have shown that performance of various EWMA control charts can be adversely affected when parameters are estimated or observations do not follow a normal distribution. To the best of our knowledge, simultaneous effect of parameter estimation and non-normality has not been studied so far. In this paper, a Markov chain approach is used to model and evaluate performance of EWMA control charts when parameter estimation is subject to non-normality using skewed and heavy-tailed symmetric distributions. Using standard deviation of the run length (SDRL), average run length (ARL), and percentiles of run lengths for various phase I sample sizes, we show that larger phase I sample sizes do not necessarily lead to a better performance for non-normal observations. Copyright © 2015 John Wiley & Sons, Ltd.

[1]  J. Robson,et al.  Nature of the maintained discharge of Q, X, and Y retinal ganglion cells of the cat. , 1987, Journal of the Optical Society of America. A, Optics and image science.

[2]  Charles W. Champ,et al.  Effects of Parameter Estimation on Control Chart Properties: A Literature Review , 2006 .

[3]  D. A. Evans,et al.  An approach to the probability distribution of cusum run length , 1972 .

[4]  Charles P. Quesenberry,et al.  The Effect of Sample Size on Estimated Limits for and X Control Charts , 1993 .

[5]  Abdel-Salam G. Abdel-Salam,et al.  The Performance of the Adaptive Exponentially Weighted Moving Average Control Chart with Estimated Parameters , 2013, Qual. Reliab. Eng. Int..

[6]  Philippe Castagliola,et al.  Some Recent Developments on the Effects of Parameter Estimation on Control Charts , 2014, Qual. Reliab. Eng. Int..

[7]  Charles W. Champ,et al.  A a comparison of the markov chain and the integral equation approaches for evaluating the run length distribution of quality control charts , 1991 .

[8]  Saddam Akber Abbasi,et al.  On Proper Choice of Variability Control Chart for Normal and Non‐normal Processes , 2012, Qual. Reliab. Eng. Int..

[9]  C. H. Sim Combined X-bar and CRL Charts for the Gamma Process , 2003, Comput. Stat..

[10]  Connie M. Borror,et al.  Robustness of the EWMA Control Chart to Non-Normality , 1999 .

[11]  Marco-Antonio Mendoza-Parra,et al.  Characterising ChIP-seq binding patterns by model-based peak shape deconvolution , 2013, BMC Genomics.

[12]  Charles W. Champ,et al.  The Performance of Exponentially Weighted Moving Average Charts With Estimated Parameters , 2001, Technometrics.

[13]  Benjamin M. Adams,et al.  Advanced Topics in Statistical Process Control : The Power of Shewhart's Charts , 1995 .

[14]  Enrique Del Castillo Run length distributions and economic design of % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-x , 1996 .

[15]  Saddam Akber Abbasi,et al.  On the Performance of Phase I Dispersion Control Charts for Process Monitoring , 2015, Qual. Reliab. Eng. Int..

[16]  W. John Braun,et al.  Estimation of σ for Individuals Charts , 2008 .

[17]  Charles W. Champ,et al.  The Run Length Distribution of the CUSUM with Estimated Parameters , 2004 .

[18]  C. H. Sim Inverse Gaussian Control Charts for Monitoring Process Variability , 2003 .

[19]  James M. Lucas,et al.  Exponentially weighted moving average control schemes: Properties and enhancements , 1990 .

[20]  Subhabrata Chakraborti Run length, average run length and false alarm rate of shewhart x-bar chart: exact derivations by conditioning , 2000 .

[21]  Wing-Keung Wong,et al.  R-charts for the exponential, Laplace and logistic processes , 2003 .

[22]  Richard E. DeVor,et al.  Statistical Quality Design and Control: Contemporary Concepts and Methods , 1992 .

[23]  Roger M. Sauter,et al.  Introduction to Statistical Quality Control (2nd ed.) , 1992 .

[24]  Marc T. Facciotti,et al.  Model-based deconvolution of genome-wide DNA binding , 2008, Bioinform..

[25]  Gemai Chen,et al.  The run length distributions of the R, s and s2 control charts when is estimated , 1998 .

[26]  Stelios Psarakis,et al.  An Examination of the Robustness to Non Normality of the EWMA Control Charts for the Dispersion , 2005 .