Improved modal characterization of the constitutive parameters in multilayered plates

Abstract This paper presents an accelerated modal numerical–experimental identification method for estimating the elastic parameters in multilayered composite plates. The proposed algorithm is based upon a contact-free measurement setup and a finite element model including a shear deformation theory of variable order. By minimizing selectively, according to the nature of the parameter, the residuals between the numerical and experimental frequencies and mode shapes, the method takes advantage of the sensitivity of the constitutive properties on the modal data. This optimization in two steps instead of a traditional one-step approach improves the accuracy of the elastic parameters estimated and enhances the convergence rate of the characterization method, as shown in two test cases applied to a unidirectional multilayered carbon/epoxy plate.

[1]  Pauli Pedersen Optimization Method Applied to Identification of Material Parameters , 1989 .

[2]  Y. Surrel,et al.  DIRECT IDENTIFICATION OF ELASTIC CONSTANTS OF ANISOTROPIC PLATES BY MODAL ANALYSIS: EXPERIMENTAL RESULTS , 1998 .

[3]  S. M. Dickinson,et al.  Improved approximate expressions for the natural frequencies of isotropic and orthotropic rectangular plates , 1985 .

[4]  K. Fällström Determining material properties in anisotropic plates using Rayleigh's method , 1991 .

[5]  Joël Cugnoni,et al.  Identification by modal analysis of composite structures modelled with FSDT and HSDT laminated shell finite elements , 2004 .

[6]  Ronald F. Gibson,et al.  Determination of elastic constants of orthotropic plates by a modal analysis/Rayleigh-Ritz technique , 1988 .

[7]  W. P. De Wilde,et al.  Anisotropic Material Identification Using Measured Resonant Frequencies of Rectangular Composite Plates , 1987 .

[8]  K. Ip,et al.  Parameter estimation of orthotropic plates by Bayesian sensitivity analysis , 1996 .

[9]  Michel Grédiac,et al.  Direct Identification of Elastic Constants of Anisotropic Plates by Modal Analysis: Theoretical and Numerical Aspects , 1996 .

[10]  Staffan Schedin,et al.  Dynamic material parameters in an anisotropic plate estimated by phase-stepped holographic interferometry , 1996 .

[11]  C. M. Mota Soares,et al.  Identification of material properties of composite plate specimens , 1993 .

[12]  A. Araújo,et al.  Characterization of material parameters of composite plate specimens using optimization and experimental vibrational data , 1996 .

[13]  J. Woodhouse,et al.  On measuring the elastic and damping constants of orthotropic sheet materials , 1988 .

[14]  Fabrice Pierron,et al.  Identification of stiffness and damping properties of thin isotropic vibrating plates using the virtual fields method: theory and simulations , 2005 .

[15]  T.-C. Lai,et al.  Determination of elastic constants of a generally orthotropic plate by modal analysis , 1993 .

[16]  Joël Cugnoni,et al.  Identification par recalage modal et fréquentiel des propriétés constitutives de coques en matériaux composites , 2005 .

[17]  Gesellschaft für Angewandte Mathematik und Mechanik,et al.  Discretization Methods and Structural Optimization: Procedures and Applications : Proceedings of a Gamm-Seminar October 5-7, 1988, Siegen, Frg , 1989 .