Ligand‐Based Virtual Screening

[1]  David S. Wishart,et al.  Development of a Novel Virtual Screening Cascade Protocol to Identify Potential Trypanothione Reductase Inhibitors , 2009, Journal of medicinal chemistry.

[2]  John Bradshaw,et al.  Similarity Searching Using Reduced Graphs , 2003, J. Chem. Inf. Comput. Sci..

[3]  Holger Claussen,et al.  Searching Fragment Spaces with Feature Trees , 2009, J. Chem. Inf. Model..

[4]  Yvonne C. Martin,et al.  Application of Belief Theory to Similarity Data Fusion for Use in Analog Searching and Lead Hopping , 2008, J. Chem. Inf. Model..

[5]  Pierre Acklin,et al.  Similarity Metrics for Ligands Reflecting the Similarity of the Target Proteins , 2003, J. Chem. Inf. Comput. Sci..

[6]  Hans Briem,et al.  Classifying “Kinase Inhibitor‐Likeness” by Using Machine‐Learning Methods , 2005, Chembiochem : a European journal of chemical biology.

[7]  Peter Willett,et al.  Analysis of Data Fusion Methods in Virtual Screening: Similarity and Group Fusion , 2006, J. Chem. Inf. Model..

[8]  G. Schneider,et al.  Scaffold‐Hopping Potential of Ligand‐Based Similarity Concepts , 2006, ChemMedChem.

[9]  Marti A. Hearst Intelligent Connections: Battling with GA-Joe. , 1998 .

[10]  Kirsch,et al.  Virtual Screening for Bioactive Molecules by Evolutionary De Novo Design Special thanks to Neil R. Taylor for his help in preparation of the manuscript. , 2000, Angewandte Chemie.

[11]  Y. Martin,et al.  Do structurally similar molecules have similar biological activity? , 2002, Journal of medicinal chemistry.

[12]  K. M. Smith,et al.  Novel software tools for chemical diversity , 1998 .

[13]  Valerie J. Gillet,et al.  Analysis of Data Fusion Methods in Virtual Screening: Theoretical Model , 2006, J. Chem. Inf. Model..

[14]  Mark A. Murcko,et al.  Virtual screening : an overview , 1998 .

[15]  Gilles Blanchard,et al.  How wrong can we get? A review of machine learning approaches and error bars. , 2009, Combinatorial chemistry & high throughput screening.

[16]  D Horvath,et al.  A virtual screening approach applied to the search for trypanothione reductase inhibitors. , 1997, Journal of medicinal chemistry.

[17]  Jérôme Hert,et al.  Comparison of Fingerprint-Based Methods for Virtual Screening Using Multiple Bioactive Reference Structures , 2004, J. Chem. Inf. Model..

[18]  G Wolber,et al.  Enhancing drug discovery through in silico screening: strategies to increase true positives retrieval rates. , 2008, Current medicinal chemistry.

[19]  Matthias Rarey,et al.  Similarity searching in large combinatorial chemistry spaces , 2001, J. Comput. Aided Mol. Des..

[20]  Christophe G. Lambert,et al.  Analysis of a Large Structure/Biological Activity Data Set Using Recursive Partitioning , 1999, J. Chem. Inf. Comput. Sci..

[21]  John M. Barnard,et al.  Chemical Similarity Searching , 1998, J. Chem. Inf. Comput. Sci..

[22]  Dragos Horvath,et al.  Neighborhood Behavior of in Silico Structural Spaces with Respect to in Vitro Activity Spaces-A Novel Understanding of the Molecular Similarity Principle in the Context of Multiple Receptor Binding Profiles , 2003, J. Chem. Inf. Comput. Sci..

[23]  Robert P Sheridan,et al.  Why do we need so many chemical similarity search methods? , 2002, Drug discovery today.

[24]  D. E. Clark What has virtual screening ever done for drug discovery? , 2008, Expert opinion on drug discovery.

[25]  Schmid,et al.  "Scaffold-Hopping" by Topological Pharmacophore Search: A Contribution to Virtual Screening. , 1999, Angewandte Chemie.

[26]  Paul Watson,et al.  Virtual Screening Using Protein-Ligand Docking: Avoiding Artificial Enrichment , 2004, J. Chem. Inf. Model..

[27]  Hans Briem,et al.  Flexsim-X: A Method for the Detection of Molecules with Similar Biological Activity , 2000, J. Chem. Inf. Comput. Sci..

[28]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[29]  Andreas Bender,et al.  Similarity Searching of Chemical Databases Using Atom Environment Descriptors (MOLPRINT 2D): Evaluation of Performance , 2004, J. Chem. Inf. Model..

[30]  Hugo Kubinyi,et al.  Chemical similarity and biological activities , 2002 .

[31]  Miklos Feher,et al.  The Use of Consensus Scoring in Ligand-Based Virtual Screening , 2006, J. Chem. Inf. Model..

[32]  Johann Gasteiger,et al.  Impact of Conformational Flexibility on Three-Dimensional Similarity Searching Using Correlation Vectors , 2006, J. Chem. Inf. Model..

[33]  Robert J. Jilek,et al.  "Lead hopping". Validation of topomer similarity as a superior predictor of similar biological activities. , 2004, Journal of medicinal chemistry.

[34]  Andrew J. S. Knox,et al.  Estrogen receptors: molecular interactions, virtual screening and future prospects. , 2006, Current topics in medicinal chemistry.

[35]  Andrew C. Good,et al.  Measuring CAMD technique performance: A virtual screening case study in the design of validation experiments , 2004, J. Comput. Aided Mol. Des..

[36]  Yvonne C. Martin,et al.  The Information Content of 2D and 3D Structural Descriptors Relevant to Ligand-Receptor Binding , 1997, J. Chem. Inf. Comput. Sci..

[37]  D. Rogers,et al.  Using Extended-Connectivity Fingerprints with Laplacian-Modified Bayesian Analysis in High-Throughput Screening Follow-Up , 2005, Journal of biomolecular screening.

[38]  Wolfgang Guba,et al.  Recent developments in de novo design and scaffold hopping. , 2008, Current opinion in drug discovery & development.

[39]  P. Charifson,et al.  Conformational analysis of drug-like molecules bound to proteins: an extensive study of ligand reorganization upon binding. , 2004, Journal of medicinal chemistry.

[40]  Naomie Salim,et al.  Analysis and Display of the Size Dependence of Chemical Similarity Coefficients , 2003, J. Chem. Inf. Comput. Sci..

[41]  Dariusz Plewczynski,et al.  Performance of machine learning methods for ligand-based virtual screening. , 2009, Combinatorial chemistry & high throughput screening.

[42]  H. L. Morgan The Generation of a Unique Machine Description for Chemical Structures-A Technique Developed at Chemical Abstracts Service. , 1965 .

[43]  Steven L. Dixon,et al.  Bioactive Diversity and Screening Library Selection via Affinity Fingerprinting , 1998, J. Chem. Inf. Comput. Sci..

[44]  Marti A. Hearst Trends & Controversies: Support Vector Machines , 1998, IEEE Intell. Syst..

[45]  Sean Ekins,et al.  Computational mapping tools for drug discovery. , 2009, Drug discovery today.

[46]  P. Willett,et al.  Combination of molecular similarity measures using data fusion , 2000 .

[47]  Christian Lemmen,et al.  Similarity searching and scaffold hopping in synthetically accessible combinatorial chemistry spaces. , 2008, Journal of medicinal chemistry.

[48]  Michael M. Hann,et al.  RECAP-Retrosynthetic Combinatorial Analysis Procedure: A Powerful New Technique for Identifying Privileged Molecular Fragments with Useful Applications in Combinatorial Chemistry , 1998, J. Chem. Inf. Comput. Sci..

[49]  Qiang Zhang,et al.  Scaffold hopping through virtual screening using 2D and 3D similarity descriptors: ranking, voting, and consensus scoring. , 2006, Journal of medicinal chemistry.

[50]  Ning Yu,et al.  Efficient Exploration of Large Combinatorial Chemistry Spaces by Monomer-Based Similarity Searching , 2009, J. Chem. Inf. Model..

[51]  William Seibel,et al.  Theoretical and practical considerations in virtual screening: a beaten field? , 2008, Current medicinal chemistry.

[52]  Jürgen Bajorath,et al.  Introduction of an Information-Theoretic Method to Predict Recovery Rates of Active Compounds for Bayesian in Silico Screening: Theory and Screening Trials , 2007, J. Chem. Inf. Model..

[53]  Darren R. Flower,et al.  On the Properties of Bit String-Based Measures of Chemical Similarity , 1998, J. Chem. Inf. Comput. Sci..

[54]  Andreas Bender,et al.  How Similar Are Similarity Searching Methods? A Principal Component Analysis of Molecular Descriptor Space , 2009, J. Chem. Inf. Model..

[55]  Robert D Clark,et al.  Neighborhood behavior: a useful concept for validation of "molecular diversity" descriptors. , 1996, Journal of medicinal chemistry.

[56]  Yojiro Sakiyama,et al.  The use of machine learning and nonlinear statistical tools for ADME prediction , 2009 .

[57]  Simona Distinto,et al.  Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection—What can we learn from earlier mistakes? , 2008, J. Comput. Aided Mol. Des..

[58]  Tudor I. Oprea,et al.  Chemical database preparation for compound acquisition or virtual screening. , 2006, Methods in molecular biology.

[59]  Eugen Lounkine,et al.  Relevance of Feature Combinations for Similarity Searching Using General or Activity Class-Directed Molecular Fingerprints , 2009, J. Chem. Inf. Model..

[60]  Ingo Muegge Synergies of virtual screening approaches. , 2008, Mini reviews in medicinal chemistry.

[61]  Tudor I. Oprea,et al.  Virtual screening applications: a study of ligand-based methods and different structure representations in four different scenarios , 2007, J. Comput. Aided Mol. Des..

[62]  Visakan Kadirkamanathan,et al.  Analysis of Neighborhood Behavior in Lead Optimization and Array Design , 2009, J. Chem. Inf. Model..

[63]  Matthias Rarey,et al.  Feature trees: A new molecular similarity measure based on tree matching , 1998, J. Comput. Aided Mol. Des..

[64]  Ulrich Rester,et al.  From virtuality to reality - Virtual screening in lead discovery and lead optimization: a medicinal chemistry perspective. , 2008, Current opinion in drug discovery & development.

[65]  Peter Willett,et al.  Scaffold Hopping Using Clique Detection Applied to Reduced Graphs , 2006, J. Chem. Inf. Model..

[66]  Jérôme Hert,et al.  New Methods for Ligand-Based Virtual Screening: Use of Data Fusion and Machine Learning to Enhance the Effectiveness of Similarity Searching , 2006, J. Chem. Inf. Model..

[67]  Miklos Feher,et al.  Novel 2D Fingerprints for Ligand-Based Virtual Screening , 2006, J. Chem. Inf. Model..

[68]  Jonathan D Hirst,et al.  Machine learning in virtual screening. , 2009, Combinatorial chemistry & high throughput screening.

[69]  Jürgen Bajorath,et al.  Integration of virtual and high-throughput screening , 2002, Nature Reviews Drug Discovery.

[70]  Dariusz Plewczynski,et al.  Assessing Different Classification Methods for Virtual Screening , 2006, J. Chem. Inf. Model..

[71]  M. Hutter,et al.  In silico prediction of drug properties. , 2009, Current medicinal chemistry.

[72]  Roberto Olender,et al.  A Fast Algorithm for Searching for Molecules Containing a Pharmacophore in Very Large Virtual Combinatorial Libraries , 2001, J. Chem. Inf. Comput. Sci..

[73]  Jia Jia,et al.  Comparative analysis of machine learning methods in ligand-based virtual screening of large compound libraries. , 2009, Combinatorial chemistry & high throughput screening.

[74]  P. Hawkins,et al.  Comparison of shape-matching and docking as virtual screening tools. , 2007, Journal of medicinal chemistry.

[75]  A. Gorse Diversity in medicinal chemistry space. , 2006, Current topics in medicinal chemistry.

[76]  Michiko Amano,et al.  Novel Method for the Evaluation of 3D Conformation Generators , 2009, J. Chem. Inf. Model..

[77]  Herbert Köppen Virtual screening - what does it give us? , 2009, Current opinion in drug discovery & development.

[78]  Robert P. Sheridan,et al.  Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling , 2003, J. Chem. Inf. Comput. Sci..

[79]  Markus H. J. Seifert,et al.  Essential factors for successful virtual screening. , 2008, Mini reviews in medicinal chemistry.

[80]  Thomas Fox,et al.  Machine learning techniques for in silico modeling of drug metabolism. , 2006, Current topics in medicinal chemistry.

[81]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[82]  G. Oliva,et al.  Virtual screening and its integration with modern drug design technologies. , 2008, Current medicinal chemistry.