Cubature formulae and orthogonal polynomials
暂无分享,去创建一个
[1] P. Appell,et al. Sur une classe de polynômes à deux variables et le calcul approché des intégrales doubles , 2022 .
[2] P. Appell,et al. Fonctions hypergéométriques et hypersphériques : polynomes d'Hermite , 1926 .
[3] D. Jackson. Formal properties of orthogonal polynomials in two variables , 1936 .
[4] J. Radon,et al. Zur mechanischen Kubatur , 1948 .
[5] W. Gröbner,et al. Über die Konstruktion von Systemen orthogonaler Polynome in ein- und zwei-dimensionalen Bereichen , 1948 .
[6] Morris Weisfeld,et al. Orthogonal polynomials in several variables , 1959, Numerische Mathematik.
[7] I. P. Mysovskikh. Proof of the minimality of the number of nodes in the cubature formula for a hypersphere , 1966 .
[8] I. P. Mysovskii. Radon's paper on the cubature formula , 1967 .
[9] H. L. Krall,et al. Orthogonal polynomials in two variables , 1967 .
[10] A. Stroud. Integration Formulas and Orthogonal Polynomials. II , 1967 .
[11] Philip Rabinowitz,et al. Methods of Numerical Integration , 1985 .
[12] I. P. Mysovskikh. The construction of cubature formulae and orthogonal polynomials , 1967 .
[13] P. M. Hirsch. Evaluation of orthogonal polynomials and relationship to evaluating multiple integrals , 1968 .
[14] A. Stroud. Integration Formulas and Orthogonal Polynomials for Two Variables , 1969 .
[15] I. P. Mysovskikh. Cubature formulae and orthogonal polynomials , 1970 .
[16] F. Fritsch. On the existence of regions with minimal third degree integration formulas , 1970 .
[17] R. Franke. Obtaining cubatures for rectangles and other planar regions by using orthogonal polynomials , 1971 .
[18] I. P. Mysovskikh. The application of orthogonal polynomials to cubature formulae , 1972 .
[19] R. Franke,et al. Minimal Point Cubatures of Precision Seven for Symmetric Planar Regions , 1973 .
[20] A. Stroud. Approximate calculation of multiple integrals , 1973 .
[21] Quadrature Formulas over Fully Symmetric Planar Regions , 1973 .
[22] Local reality on algebraic varieties , 1974 .
[23] C. Günther. Third Degree Integration Formulas with Four Real Points and Positive Weights in Two Dimensions , 1974 .
[24] Cubature formulas of degree eleven for symmetric planar regions , 1975 .
[25] G. N. Gegel. A quadrature formula for a four-dimensional sphere☆ , 1975 .
[26] Anny Haegemans,et al. Cubature formulas of degree nine for symmetric planar regions , 1975 .
[27] Hans Michael Möller,et al. Hermite interpolation in several variables using ideal-theoretic methods , 1976, Constructive Theory of Functions of Several Variables.
[28] Circularly symmetrical integration formulas for two-dimensional circularly symmetrical regions , 1976 .
[29] H. Michael Möller,et al. Mehrdimensionale Hermite-Interpolation und numerische Integration , 1976 .
[30] Robert Piessens,et al. Construction of cubature formulas of degree eleven for symmetric planar regions, using orthogonal polynomials , 1976 .
[31] H. M. Möller,et al. Kubaturformeln mit minimaler Knotenzahl , 1976 .
[32] A. Haegemans. Tables of symmetrical cubature formulas for the two-dimensional hexagon , 1976 .
[33] Anny Haegemans,et al. Construction of Cubature Formulas of Degree Seven and Nine Symmetric Planar Regions, Using Orthogonal Polynomials , 1977 .
[34] T. N. L. Patterson,et al. Construction of Algebraic Cubature Rules Using Polynomial Ideal Theory , 1978 .
[35] H. Schmid. On cubature formulae with a minimal number of knots , 1978 .
[36] H. M. Möller. The Construction of Cubature Formulae and Ideals of Principal Classes , 1979 .
[37] H. M. Möller,et al. Lower Bounds for the Number of Nodes in Cubature Formulae , 1979 .
[38] Interpolatorische Kubaturformeln und reelle Ideale , 1980 .
[39] H. Engels,et al. Numerical Quadrature and Cubature , 1980 .
[40] Franz Peherstorfer,et al. Characterization of Positive Quadrature Formulas , 1981 .
[41] G. Wanner,et al. The number of positive weights of a quadrature formula , 1982 .
[42] M. Kowalski,et al. The Recursion Formulas for Orthogonal Polynomials in n Variables , 1982 .
[43] A. Haegemans. Construction of Known and New Cubature Formulas of Degree Five for Three-Dimensional Symmetric Regions, Using Orthogonal Polynomials , 1982 .
[44] M. Kowalski,et al. Orthogonality and Recursion Formulas for Polynomials in n Variables , 1982 .
[45] Franz Peherstorfer. Characterization of Quadrature Formula II , 1984 .
[46] Algebraic characterization of orthogonality in the space of polynomials , 1985 .
[47] Ronald Cools,et al. Construction of Symmetric Cubature Formulae with the Number of Knots (Almost) Equal to Möller’s Lower Bound , 1987 .
[48] H. Michael Möller,et al. On the Construction of Cubature Formulae with Few Nodes Using Groebner Bases , 1987 .
[49] H. Schmid. On Minimal Cubature Formulae of Even Degree , 1988 .
[50] Why do so many cubature formulae have so many positive weights? , 1988 .
[51] Ronald Cools,et al. On cubature formulae of degree 4k+1 attaining Möller's lower bound for integrals with circular symmetry , 1992 .
[52] H. Berens,et al. On the Number of Nodes of Odd Degree Cubature Formulae for Integrals with Jacobi Weights on a Simplex , 1992 .
[53] Terje O. Espelid,et al. Numerical Integration: Recent Developments, Software and Applications. , 1993 .
[54] R. Cools,et al. Monomial cubature rules since “Stroud”: a compilation , 1993 .
[55] Yuan Xu,et al. On multivariate orthogonal polynomials , 1993 .
[56] Ronald Cools,et al. A new lower bound for the number of nodes in cubature formulae of degree 4 n + 1 for some circularly symmetric integrals , 1993 .
[57] Yuan Xu,et al. A characterization of positive quadrature formulae , 1994 .
[58] Yuan Xu,et al. On bivariate Gaussian cubature formulae , 1994 .
[59] Yuan Xu,et al. Block Jacobi matrices and zeros of multivariate orthogonal polynomials , 1994 .
[60] Yuan Xu. Recurrence formulas for multivariate orthogonal polynomials , 1994 .
[61] Yuan Xu,et al. Multivariate Gaussian cubature formulae , 1995 .
[62] Hans Joachim Schmid,et al. Two-Dimensional Minimal Cubature Formulas and Matrix Equations , 1995, SIAM J. Matrix Anal. Appl..
[63] Yuan Xu,et al. On two-dimensional definite orthogonal systems and a lower bound for the number of nodes of associated cubature formulae , 1995 .
[64] Ronald Cools,et al. Constructing cubature formulae: the science behind the art , 1997, Acta Numerica.
[65] S. L. Sobolev,et al. Theory of Cubature Formulas , 1997 .
[66] S. L. Sobolev,et al. Problems and Results of the Theory of Cubature Formulas , 1997 .
[67] R. Cools. Monomial cubature rules since “Stroud”: a compilation—part 2 , 1999 .