Recursive-batch estimation of motion and structure from monocular image sequences

Abstract This paper addresses the issue of optimal motion and structure estimation from monocular image sequences of a rigid scene. The new method has the following characteristics: (1) the dimension of the search space in the nonlinear optimization is drastically reduced by exploiting the relationship between structure and motion parameters; (2) the degree of reliability of the observations and estimates is effectively taken into account; (3) the proposed formulation allows arbitrary interframe motion; (4) the information about the structure of the scene, acquired from previous images, is systematically integrated into the new estimations; (5) the integration of multiple views using this method gives a large 2.5D visual map, much larger than that covered by any single view. It is shown also that the scale factor associated with any two consecutive images in a monocular sequence is determined by the scale factor of the first two images. Our simulation results and experiments with long image sequences of real world scenes indicate that the optimization method developed in this paper not only greatly reduces the computational complexity but also substantially improves the motion and structure estimates over those produced by the linear algorithms.