The Tripartite Lichen Ricasolia virens: Involvement of Cyanobacteria and Bacteria in Its Morphogenesis

Ricasolia virens is an epiphytic lichen-forming fungus mainly distributed in Western Europe and Macaronesia in well-structured forests with ecological continuity that lack eutrophication. It is considered to be threatened or extinct in many territories in Europe (IUCN). Despite its biological and ecological relevance, studies on this taxon are scarce. The thalli are tripartite, and the mycobiont has a simultaneous symbiotic relationship with cyanobacteria and green microalgae, which represent interesting models to analyse the strategies and adaptations resulting from the interactions of lichen symbionts. The present study was designed to contribute to a better understanding of this taxon, which has shown a clear decline over the last century. The symbionts were identified by molecular analysis. The phycobiont is Symbiochloris reticulata, and the cyanobionts (Nostoc) are embedded in internal cephalodia. Light, transmission electron and low-temperature scanning microscopy techniques were used to investigate the thallus anatomy, ultrastructure of microalgae and ontogeny of pycnidia and cephalodia. The thalli are very similar to its closest relative, Ricasolia quercizans. The cellular ultrastructure of S. reticulata by TEM is provided. Non-photosynthetic bacteria located outside the upper cortex are introduced through migratory channels into the subcortical zone by the splitting of fungal hyphae. Cephalodia were very abundant, but never as external photosymbiodemes.

[1]  Ó. Andrésson,et al.  Symbiont‐specific responses to environmental cues in a threesome lichen symbiosis , 2022, Molecular ecology.

[2]  W. Wanek,et al.  Loss of nitrogen fixing capacity in a montane lichen is linked to increased nitrogen deposition , 2022, Journal of Ecology.

[3]  A. Janjić,et al.  Antibiotic-Induced Treatments Reveal Stress-Responsive Gene Expression in the Endangered Lichen Lobaria pulmonaria , 2022, Journal of fungi.

[4]  C. Scheidegger,et al.  Short Communication: Co-occurring Lobaria pulmonaria and Ricasolia quercizans share green algal photobionts: Consequences for conservation , 2022, The Bryologist.

[5]  B. Bergman,et al.  Cyanolichens , 2022, Biology and Environment: Proceedings of the Royal Irish Academy.

[6]  R. Lücking,et al.  Global phylogeny and taxonomic reassessment of the lichen genus Dendriscosticta (Ascomycota: Peltigerales) , 2021, TAXON.

[7]  H. Masumoto,et al.  Lichen algae: the photosynthetic partners in lichen symbioses , 2021, The Lichenologist.

[8]  F. F. Coelho,et al.  Urban environmental influences on heterocyst investment in Leptogium cyanescens (Collemataceae) , 2021, Nova Hedwigia.

[9]  A. Pentecost Estimates of abundance and biomass of cephalodia and their relationship to nitrogen deposition in some British populations of Lobaria pulmonaria (L.) Hoffm. , 2021, The Lichenologist.

[10]  Manju M. Gupta,et al.  Editorial: Anthropogenic impacts on symbiotic systems , 2021, Symbiosis.

[11]  P. Pellikka,et al.  Complex Interaction Networks Among Cyanolichens of a Tropical Biodiversity Hotspot , 2021, Frontiers in Microbiology.

[12]  Erik F. Y. Hom,et al.  Towards a Systems Biology Approach to Understanding the Lichen Symbiosis: Opportunities and Challenges of Implementing Network Modelling , 2021, Frontiers in Microbiology.

[13]  I. Potoroko,et al.  Contribution of Cyanotoxins to the Ecotoxicological Role of Lichens , 2021, Toxins.

[14]  J. Herr,et al.  Lichens and biofilms: Common collective growth imparts similar developmental strategies , 2021 .

[15]  D. Zühlke,et al.  The Lichens’ Microbiota, Still a Mystery? , 2021, Frontiers in Microbiology.

[16]  A. Beck,et al.  Morphological and phylogenetic analyses of Toniniopsis subincompta s. lat. (Ramalinaceae, Lecanorales) in Eurasia , 2021, The Lichenologist.

[17]  L. Muggia,et al.  Thallus Growth Stage and Geographic Origin Shape Microalgal Diversity in Ramalina farinacea Lichen Holobionts , 2021, Journal of phycology.

[18]  J. Peñuelas,et al.  Comparable canopy and soil free-living nitrogen fixation rates in a lowland tropical forest. , 2021, The Science of the total environment.

[19]  J. Markham,et al.  Bryophyte and lichen biomass and nitrogen fixation in a high elevation cloud forest in Cerro de La Muerte, Costa Rica , 2021, Oecologia.

[20]  P. Nimis,et al.  Towards a digital key to the lichens of Italy , 2020, Symbiosis.

[21]  A. Maciuk,et al.  Lichen-associated bacteria transform antibacterial usnic acid to products of lower antibiotic activity. , 2020, Phytochemistry.

[22]  Patricia Moya,et al.  Symbiotic microalgal diversity within lichenicolous lichens and crustose hosts on Iberian Peninsula gypsum biocrusts , 2020, Scientific Reports.

[23]  C. Hertweck,et al.  Chemical Mediators at the Bacterial-Fungal Interface. , 2020, Annual review of microbiology.

[24]  D. Hawksworth,et al.  Lichens redefined as complex ecosystems , 2020, The New phytologist.

[25]  T. Pypker,et al.  Canopy settings shape elemental composition of the epiphytic lichen Lobaria pulmonaria in unmanaged conifer forests , 2020, Ecological Indicators.

[26]  Rebecca J. Case,et al.  3D biofilms: in search of the polysaccharides holding together lichen symbioses , 2020, FEMS microbiology letters.

[27]  Ü. Niinemets,et al.  Contrasting co-occurrence patterns of photobiont and cystobasidiomycete yeast associated with common epiphytic lichen species. , 2020, The New phytologist.

[28]  T. Pankratov,et al.  Lichenibacterium ramalinae gen. nov, sp. nov., Lichenibacterium minor sp. nov., the first endophytic, beta-carotene producing bacterial representatives from lichen thalli and the proposal of the new family Lichenibacteriaceae within the order Rhizobiales , 2019, Antonie van Leeuwenhoek.

[29]  J. Lendemer,et al.  Lichen conservation in North America: a review of current practices and research in Canada and the United States , 2019, Biodiversity and Conservation.

[30]  J. Rikkinen,et al.  Relationships between mycobiont identity, photobiont specificity and ecological preferences in the lichen genus Peltigera (Ascomycota) in Estonia (northeastern Europe) , 2019, Fungal Ecology.

[31]  C. Scheidegger,et al.  Genetic Structure of Lobaria pulmonaria in the Alps as a Result of Post-Glacial Recolonization History , 2018, Herzogia.

[32]  L. Muggia,et al.  The hidden diversity of lichenised Trebouxiophyceae (Chlorophyta) , 2018, Phycologia.

[33]  P. Škaloud,et al.  The complexity of symbiotic interactions influences the ecological amplitude of the host: A case study in Stereocaulon (lichenized Ascomycota) , 2018, Molecular ecology.

[34]  Ó. Andrésson,et al.  Distinctive characters of Nostoc genomes in cyanolichens , 2018, BMC Genomics.

[35]  Patricia Moya,et al.  A multi-tool approach to assess microalgal diversity in lichens: isolation, Sanger sequencing, HTS and ultrastructural correlations , 2018, The Lichenologist.

[36]  C. Cornejo,et al.  Ricasolia amplissima (Lobariaceae): one species, three genotypes and a new taxon from south-eastern Alaska , 2017, The Lichenologist.

[37]  Jörg Bernhardt,et al.  Symbiotic Interplay of Fungi, Algae, and Bacteria within the Lung Lichen Lobaria pulmonaria L. Hoffm. as Assessed by State-of-the-Art Metaproteomics. , 2017, Journal of proteome research.

[38]  L. Muggia,et al.  Unexpected associated microalgal diversity in the lichen Ramalina farinacea is uncovered by pyrosequencing analyses , 2017, PloS one.

[39]  J. Rikkinen Cyanobacteria in Terrestrial Symbiotic Systems , 2017 .

[40]  J. Orlando,et al.  Substrates of Peltigera Lichens as a Potential Source of Cyanobionts , 2017, Microbial Ecology.

[41]  Chuan-peng Liu,et al.  Isolation and culture of lichen bacteriobionts , 2017, The Lichenologist.

[42]  J. Rikkinen Symbiotic cyanobacteria in lichens , 2017 .

[43]  Forest Rohwer,et al.  Spatial Molecular Architecture of the Microbial Community of a Peltigera Lichen , 2016, mSystems.

[44]  T. Friedl,et al.  Taxonomic revision and species delimitation of coccoid green algae currently assigned to the genus Dictyochloropsis (Trebouxiophyceae, Chlorophyta) , 2016, Journal of phycology.

[45]  M. Grube,et al.  High Life Expectancy of Bacteria on Lichens , 2016, Microbial Ecology.

[46]  C. Scheidegger As thick as three in a bed , 2016, Molecular ecology.

[47]  A. Elvebakk Lepidocollema polyphyllinum (Pannariaceae) from the Solomon Islands: cephalodium-like structure with two different Nostoc symbionts in dimorphous thalli , 2016, The Lichenologist.

[48]  K. Schneider,et al.  Escape from the cryptic species trap: lichen evolution on both sides of a cyanobacterial acquisition event , 2016, Molecular ecology.

[49]  Jung Soh,et al.  Rhizobiales as functional and endosymbiontic members in the lichen symbiosis of Lobaria pulmonaria L. , 2015, Front. Microbiol..

[50]  M. Grube,et al.  Microbial cargo: do bacteria on symbiotic propagules reinforce the microbiome of lichens? , 2014, Environmental microbiology.

[51]  Jung Soh,et al.  Exploring functional contexts of symbiotic sustain within lichen-associated bacteria by comparative omics , 2014, The ISME Journal.

[52]  M. Nelsen,et al.  Molecular phylogeny and symbiotic selectivity of the green algal genus Dictyochloropsis s.l. (Trebouxiophyceae): a polyphyletic and widespread group forming photobiont-mediated guilds in the lichen family Lobariaceae. , 2014, The New phytologist.

[53]  E. Sérusiaux,et al.  Do Photobiont Switch and Cephalodia Emancipation Act as Evolutionary Drivers in the Lichen Symbiosis? A Case Study in the Pannariaceae (Peltigerales) , 2014, PloS one.

[54]  Alexandros Stamatakis,et al.  RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies , 2014, Bioinform..

[55]  L. Forrest,et al.  Lichen-symbiotic cyanobacteria associated with Peltigera have an alternative vanadium-dependent nitrogen fixation system , 2014 .

[56]  L. Margulis,et al.  Symbiogenesis: the holobiont as a unit of evolution. , 2013, International microbiology : the official journal of the Spanish Society for Microbiology.

[57]  J. Nascimbene,et al.  Evaluating the conservation status of epiphytic lichens of Italy: A red list , 2013 .

[58]  M. Grube,et al.  The symbiotic playground of lichen thalli--a highly flexible photobiont association in rock-inhabiting lichens. , 2013, FEMS microbiology ecology.

[59]  M. Grube,et al.  Localization of bacteria in lichens from Alpine soil crusts by fluorescence in situ hybridization , 2013 .

[60]  F. Lutzoni,et al.  Assessing population structure and host specialization in lichenized cyanobacteria. , 2013, The New phytologist.

[61]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[62]  C. Scheidegger,et al.  New morphological aspects of cephalodium formation in the lichen Lobaria pulmonaria (Lecanorales, Ascomycota) , 2013, The Lichenologist.

[63]  Ó. Andrésson,et al.  LEC-2, a highly variable lectin in the lichen Peltigera membranacea , 2012, Symbiosis.

[64]  L. Excoffier,et al.  European phylogeography of the epiphytic lichen fungus Lobaria pulmonaria and its green algal symbiont , 2012, Molecular ecology.

[65]  Ramón Doallo,et al.  CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics , 2012, Nature Methods.

[66]  M. Grube,et al.  Bacterial taxa associated with the lung lichen Lobaria pulmonaria are differentially shaped by geography and habitat. , 2012, FEMS microbiology letters.

[67]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[68]  C. Scheidegger,et al.  Congruent genetic structure in the lichen-forming fungus Lobaria pulmonaria and its green-algal photobiont. , 2012, Molecular plant-microbe interactions : MPMI.

[69]  M. Vicente-Manzanares,et al.  Fungal lectin of Peltigera canina induces chemotropism of compatible Nostoc cells by constriction-relaxation pulses of cyanobiont cytoskeleton , 2011, Plant signaling & behavior.

[70]  L. Casano,et al.  Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? , 2011, Environmental microbiology.

[71]  Mark A. Miller,et al.  Creating the CIPRES Science Gateway for inference of large phylogenetic trees , 2010, 2010 Gateway Computing Environments Workshop (GCE).

[72]  Scott T. Bates,et al.  Bacterial Communities Associated with the Lichen Symbiosis , 2010, Applied and Environmental Microbiology.

[73]  V. Vasconcelos,et al.  Are Known Cyanotoxins Involved in the Toxicity of Picoplanktonic and Filamentous North Atlantic Marine Cyanobacteria? , 2010, Marine drugs.

[74]  I. Widmer,et al.  Microsatellite markers for Dictyochloropsis reticulata (Trebouxiophyceae), the symbiotic alga of the lichen Lobaria pulmonaria (L.) , 2010, Conservation Genetics.

[75]  M. Grube,et al.  Microbial consortia of bacteria and fungi with focus on the lichen symbiosis , 2009 .

[76]  M. Grube,et al.  Species-specific structural and functional diversity of bacterial communities in lichen symbioses , 2009, The ISME Journal.

[77]  Jolanta Miadlikowska,et al.  A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? , 2009, Systematic biology.

[78]  K. Sivonen,et al.  Microcystin production in the tripartite cyanolichen Peltigera leucophlebia. , 2009, Molecular plant-microbe interactions : MPMI.

[79]  E. Lobakova,et al.  The characterization of lectins from the thripartite lichen Peltigera aphthosa (L.) Willd. , 2009, Moscow University Biological Sciences Bulletin.

[80]  J. Rougemont,et al.  A rapid bootstrap algorithm for the RAxML Web servers. , 2008, Systematic biology.

[81]  M. Grube,et al.  In situ analysis of the bacterial community associated with the reindeer lichen Cladonia arbuscula reveals predominance of Alphaproteobacteria. , 2008, FEMS microbiology ecology.

[82]  P. Vitousek,et al.  Phosphorus Fertilization Increases the Abundance and Nitrogenase Activity of the Cyanolichen Pseudocyphellaria crocata in Hawaiian Montane Forests , 2007 .

[83]  S. Stenroos,et al.  High cyanobiont selectivity of epiphytic lichens in old growth boreal forest of Finland. , 2007, The New phytologist.

[84]  M. Grube,et al.  Molecular analysis of lichen-associated bacterial communities. , 2006, FEMS microbiology ecology.

[85]  J. Pastor,et al.  Increased soil nitrogen associated with dinitrogen‐fixing, terricolous lichens of the genus Peltigera in northern Minnesota , 2006 .

[86]  J. Hyvönen,et al.  High selectivity in symbiotic associations of lichenized ascomycetes and cyanobacteria , 2006 .

[87]  M. Sanz,et al.  Effects of ozone on the foliar histology of the mastic plant (Pistacia lentiscus L.). , 2004, Environmental pollution.

[88]  Marie E. Antoine An Ecophysiological Approach to Quantifying Nitrogen Fixation by Lobaria oregana , 2004 .

[89]  L. Margulis,et al.  LOOKING AT LICHENS , 2003 .

[90]  I. Oksanen,et al.  Lichen Guilds Share Related Cyanobacterial Symbionts , 2002, Science.

[91]  J. Eaton-Rye,et al.  Species of cyanolichens from Pseudocyphellaria with indistinguishable ITS sequences have different photobionts. , 2002, The New phytologist.

[92]  P. Lindblad,et al.  Field investigations on cyanobacterial specificity in Peltigera aphthosa. , 2001, The New phytologist.

[93]  M. Piercey-Normore,et al.  Algal switching among lichen symbioses. , 2001, American journal of botany.

[94]  P. Lindblad,et al.  Spatial patterns of photobiont diversity in some Nostoc-containing lichens. , 2000, The New phytologist.

[95]  J. Palmer,et al.  Investigating Deep Phylogenetic Relationships among Cyanobacteria and Plastids by Small Subunit rRNA Sequence Analysis 1 , 1999, The Journal of eukaryotic microbiology.

[96]  L. Margulis,et al.  Morphogenesis by symbiogenesis. , 1998, International microbiology : the official journal of the Spanish Society for Microbiology.

[97]  P. Lindblad,et al.  Cyanobiont specificity in some Nostoc‐containing lichens and in a Peltigera aphthosa photosymbiodeme , 1998 .

[98]  T. Green,et al.  Differences in photosynthetic performance between cyanobacterial and green algal components of lichen photosymbiodemes measured in the field. , 1993, The New phytologist.

[99]  S. Ott,et al.  The development of regenerative thallus structures in lichens , 1993 .

[100]  T. Bruns,et al.  ITS primers with enhanced specificity for basidiomycetes ‐ application to the identification of mycorrhizae and rusts , 1993, Molecular ecology.

[101]  D. Galloway,et al.  Decomposition of Species of Pseudocyphellaria and Sticta in a Southern Chilean Forest , 1990, The Lichenologist.

[102]  J. Lawrey Biological Role of Lichen Substances , 1986 .

[103]  J. Laundon The Typification of Withering's Neglected Lichens , 1984, The Lichenologist.

[104]  W. Silvester,et al.  NITROGEN FIXATION BY MEMBERS OF THE STICTACEAE (LICHENES) OF NEW ZEALAND , 1980 .

[105]  H. Akaike A new look at the statistical model identification , 1974 .

[106]  W. Jordan The Genus Lobaria in North America North of Mexico , 1973 .

[107]  K. Kershaw,et al.  NITROGEN METABOLISM IN LICHENS: III. NITROGEN FIXATION BY INTERNAL CEPHALODIA IN LOBARIA PULMONARIA , 1970 .

[108]  W. P. Jordan The Internal Cephalodia of the Genus Lobarial , 1970 .

[109]  A. Segura Bacterial communities associated with the lichen ramalina farinacea (l.) ach.: composition, biodiversity and biotechnological potential , 2018 .

[110]  M. Grube,et al.  The lichen photobiont Trebouxia: towards and appreciation of species diversity and molecular studies , 2016 .

[111]  B. Goffinet,et al.  The cyanomorph of Ricasolia virens comb. nov. (Lobariaceae, lichenized Ascomycetes) , 2016 .

[112]  L. Mazza,et al.  Coexistence of different intrathalline symbiotic algae and bacterial biofilms in the foliose Canarian lichen "Parmotrema pseudotinctorum" , 2013 .

[113]  C. Schadt,et al.  Photoautotrophic symbiont and geography are major factors affecting highly structured and diverse bacterial communities in the lichen microbiome. , 2012, Environmental microbiology.

[114]  L. Casano,et al.  South European populations of Ramalina farinacea (L.) Ach. share different Trebouxia algae , 2010 .

[115]  B. Büdel,et al.  Thallus morphology and anatomy , 2008 .

[116]  E. B. Rodríguez,et al.  La Reserva Integral de Muniellos (Asturias) como ejemplo de alta diversidad liquénica y de estrategias para conservación en espacios naturales , 2007 .

[117]  E. B. Rodríguez,et al.  Lobaria virens (With.) J.R. Laundon, liquen amenazado en Europa, bioindicador del estado de conservación de los bosques, en la Sierra del Sueve (Asturias) , 2006 .

[118]  B. Fontaniella,et al.  Secreted arginases from phylogenetically farrelated lichen species act as cross-recognition factors for two different algal cells. , 2004, European journal of cell biology.

[119]  J. Poelt,et al.  Über Cyanotrophie bei Flechten , 2004, Plant Systematics and Evolution.

[120]  F. Schumm Die Flechtengattung Lobaria auf Madeira , 2003 .

[121]  C. Scheidegger,et al.  Liste Rouge des espèces menacées en Suisse. Lichens épiphytes et terricoles , 2002 .

[122]  E. Stocker-Wörgötter Resynthesis of Photosymbiodemes , 2002 .

[123]  M. Galun,et al.  Cephalodia of the lichen Peltigera aphthosa (L.) willd. specific recognition of the compatible photobiont , 2000 .

[124]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .

[125]  L. Margulis Symbiosis in cell evolution: Life and its environment on the early earth , 1981 .

[126]  M. Letrouit-Galinou Etudes sur le Lobaria laetevirens (Lght.) Zahlbr. (Discolichen, Stictacée). II: Le développement des pycnides , 1972 .

[127]  M. Karnovsky,et al.  A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron-microscopy , 1965 .

[128]  A. Kaule Die Cephalodien der Flechten , 1931 .