Orthonormal Bernstein Galerkin technique for computations of higher order eigenvalue problems

[1]  A. Pascoal,et al.  Bernstein Polynomial-Based Method for Solving Optimal Trajectory Generation Problems , 2022, Sensors.

[2]  H. Farzana,et al.  Numerical Study on Single and Multi-Dimensional Boundary Value Problems by the Method of Weighted Residual , 2020, American Journal of Computational Mathematics.

[3]  S. K. Bhowmik,et al.  Comparative Study on Sixth Order Boundary Value Problems with Application to Linear Hydrodynamic Stability Problem and Benard Layer Eigenvalue Problem , 2019, Differential Equations and Dynamical Systems.

[4]  Sapna Pandit,et al.  A class of numerical algorithms based on cubic trigonometric B-spline functions for numerical simulation of nonlinear parabolic problems , 2019, Computational and Applied Mathematics.

[5]  C. Böckmann,et al.  Solutions of Direct and Inverse Even-Order Sturm-Liouville Problems Using Magnus Expansion , 2019, Mathematics.

[6]  Said Mesloub,et al.  Even Higher Order Fractional Initial Boundary Value Problem with Nonlocal Constraints of Purely Integral Type , 2019, Symmetry.

[7]  K. N.,et al.  Numerical Solution of Tenth Order Boundary Value Problems by Petrov-Galerkin Method with Quintic B-splines as Basis Functions and Sextic B-Splines as Weight Functions , 2019, International Journal of Computer Applications.

[8]  Mehmet Emir Koksal Time and frequency responses of non-integer order RLC circuits , 2019, AIMS Mathematics.

[9]  D. Baleanu,et al.  New Numerical Method for Solving Tenth Order Boundary Value Problems , 2018, Mathematics.

[10]  Hamed Zeidabadi,et al.  Using of Bernstein spectral Galerkin method for solving of weakly singular Volterra–Fredholm integral equations , 2018 .

[11]  S. Siddiqi,et al.  Numerical solution for solving special eighth-order linear boundary value problems using Legendre Galerkin method , 2016, Mathematical Sciences.

[12]  E. Babolian,et al.  Normalized Bernstein polynomials in solving space-time fractional diffusion equation , 2017 .

[13]  Abdul-Majid Wazwaz,et al.  A numerical study of electrohydrodynamic flow analysis in a circular cylindrical conduit using orthonormal Bernstein polynomials , 2017 .

[14]  S. K. Bhowmik,et al.  Numerical Solutions of Sixth Order Eigenvalue Problems Using Galerkin Weighted Residual Method , 2017 .

[15]  Hamid Reza Tabrizidooz,et al.  Bernstein polynomial basis for numerical solution of boundary value problems , 2017, Numerical Algorithms.

[16]  Md. Shafiqul Islam,et al.  Numerical solutions of eighth order BVP by the Galerkin residual technique with Bernstein and Legendre polynomials , 2015, Appl. Math. Comput..

[17]  E. H. Doha,et al.  A novel operational matrix method based on shifted Legendre polynomials for solving second-order boundary value problems involving singular, singularly perturbed and Bratu-type equations , 2015 .

[18]  Md. Bellal Hossain,et al.  Numerical Approaches for Tenth and Twelfth Order Linear and Nonlinear Differential Equations , 2015 .

[19]  Michael A. Bellucci On the explicit representation of orthonormal Bernstein polynomials , 2014, 1404.2293.

[20]  A. Malek,et al.  Semi-analytical Approximation for Solving High-order Sturm-Liouville Problems , 2014 .

[21]  M. E. Koksal Recent Developments on Operator-Difference Schemes for Solving Nonlocal BVPs for the Wave Equation , 2011 .

[22]  Mehdi Dehghan,et al.  The operational matrices of Bernstein polynomials for solving the parabolic equation subject to specification of the mass , 2011, J. Comput. Appl. Math..

[23]  Ali H. Bhrawy,et al.  On the Derivatives of Bernstein Polynomials: An Application for the Solution of High Even-Order Differential Equations , 2011 .

[24]  Calin-Ioan Gheorghiu,et al.  Analytical and numerical solutions to an electrohydrodynamic stability problem , 2010, Appl. Math. Comput..

[25]  C. I. Gheorghiu,et al.  Spectral methods in linear stability. Applications to thermal convection with variable gravity field , 2009 .

[26]  Paul Bracken,et al.  Solutions of differential equations in a Bernstein polynomial basis , 2007 .

[27]  Shahid S. Siddiqi,et al.  Solution of 10th-order boundary value problems using non-polynomial spline technique , 2007, Appl. Math. Comput..

[28]  Guo-Wei Wei,et al.  A note on the numerical solution of high-order differential equations , 2003 .

[29]  Bert Jüttler,et al.  The dual basis functions for the Bernstein polynomials , 1998, Adv. Comput. Math..

[30]  Edward H. Twizell,et al.  Spline solutions of linear twelfth-order boundary-value problems , 1997 .

[31]  Rida T. Farouki,et al.  On the optimal stability of the Bernstein basis , 1996, Math. Comput..

[32]  Edward H. Twizell,et al.  Numerical methods for eighth-, tenth- and twelfth-order eigenvalue problems arising in thermal instability , 1994, Adv. Comput. Math..

[33]  Brian Straughan,et al.  The Energy Method, Stability, and Nonlinear Convection , 1991 .

[34]  Rida T. Farouki,et al.  On the numerical condition of polynomials in Bernstein form , 1987, Comput. Aided Geom. Des..

[35]  Fijhua Cheng,et al.  On the rate of convergence of Bernstein polynomials of functions of bounded variation , 1983 .

[36]  Erwin Kreyszig,et al.  Bernstein polynomials and numerical integration , 1979 .

[37]  E. Kreyszig Introductory Functional Analysis With Applications , 1978 .