Recent Advances in Nanocontact Spin-Torque Oscillators

We present a comprehensive review of the most recent advances in nanocontact spin torque oscillators (NC-STOs). NC-STOs are highly tunable, with both applied magnetic field and dc, broadband microwave signal generators. As opposed to the nanopillar geometry, where the lateral cross section of the entire device has been confined to a typically <;100 nm diameter, in NC-STOs, it is only the current injection site that has been laterally confined on top of an extended magnetic film stack. Three distinct material combinations will be discussed: 1) a Co/Cu/NiFe pseudospin valve (PSV) where both the Co and NiFe have a dominant in-plane anisotropy; 2) a Co/Cu/[Co/Ni]4 orthogonal PSV where the Co/Ni multilayer has a strong perpendicular anisotropy; and 3) a single NiFe layer with asymmetric non-magnetic Cu leads. We explore the rich and diverse magnetodynamic modes that can be generated in these three distinct sample geometries.

[1]  J. Åkerman,et al.  Decoherence, Mode Hopping, and Mode Coupling in Spin Torque Oscillators , 2013, IEEE Transactions on Magnetics.

[2]  Grant R. Gerhart,et al.  Micromagnetic study of the above-threshold generation regime in a spin-torque oscillator based on a magnetic nanocontact magnetized at an arbitrary angle , 2008 .

[3]  Ye. Pogoryelov,et al.  Frequency modulation of spin torque oscillator pairs , 2010, 1007.2305.

[4]  Grant R. Gerhart,et al.  Angular dependence of the microwave-generation threshold in a nanoscale spin-torque oscillator , 2007 .

[5]  B. N. Engel,et al.  Phase-locking in double-point-contact spin-transfer devices , 2005, Nature.

[6]  Johan Åkerman,et al.  Spin-wave-mode coexistence on the nanoscale: a consequence of the Oersted-field-induced asymmetric energy landscape. , 2013, Physical review letters.

[7]  F. Mancoff,et al.  Modulation of Individual and Mutually Synchronized Nanocontact-Based Spin Torque Oscillators , 2011, IEEE Transactions on Magnetics.

[8]  B. Gurney,et al.  Nanoscale magnetic field detection using a spin torque oscillator , 2010, Nanotechnology.

[9]  Justin M. Shaw,et al.  Spin-transfer dynamics in spin valves with out-of-plane magnetized CoNi free layers , 2010 .

[10]  Anders Eklund,et al.  Non-stationary excitation of two localized spin-wave modes in a nano-contact spin torque oscillator , 2013 .

[11]  Johan AAkerman,et al.  Analytical investigation of modulated spin-torque oscillators in the framework of coupled differential equations with variable coefficients , 2012, 1202.3429.

[12]  A D Kent,et al.  Current-induced excitations in single cobalt ferromagnetic layer nanopillars. , 2004, Physical review letters.

[13]  S. E. Russek,et al.  Current-driven microwave dynamics in magnetic point contacts as a function of applied field angle , 2004 .

[14]  Spin-torque driven magnetization dynamics in a nanocontact setup for low external fields: Numerical simulation study , 2009, 0903.2416.

[15]  M. D. Stiles,et al.  Phenomenological theory of current-induced magnetization precession , 2004 .

[16]  Department of Physics,et al.  Power and linewidth of propagating and localized modes in nanocontact spin-torque oscillators , 2012, 1203.3244.

[17]  Johan Åkerman,et al.  Spin torque oscillator frequency versus magnetic field angle: The prospect of operation beyond 65 GHz , 2009 .

[18]  J. Åkerman,et al.  Mutually synchronized bottom-up multi-nanocontact spin–torque oscillators , 2013, Nature Communications.

[19]  J. Katine,et al.  Mutual phase-locking of microwave spin torque nano-oscillators , 2005, Nature.

[20]  S. E. Russek,et al.  Frequency modulation of spin-transfer oscillators , 2005 .

[21]  Andrei Slavin,et al.  Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet. , 2005, Physical review letters.

[22]  G. Chern,et al.  Fractional vortices and composite domain walls in flat nanomagnets. , 2005, Physical review letters.

[23]  Joo-Von Kim,et al.  Line shape distortion in a nonlinear auto-oscillator near generation threshold: application to spin-torque nano-oscillators. , 2007, Physical review letters.

[24]  Ye. Pogoryelov,et al.  Spin Torque–Generated Magnetic Droplet Solitons , 2013, Science.

[25]  Anders Eklund,et al.  Magnetic droplet solitons in orthogonal nano-contact spin torque oscillators , 2014 .

[26]  Xi Chen,et al.  Phase locking of spin-torque oscillators by spin-wave interactions , 2009 .

[27]  B. A. Ivanov,et al.  Bound states of a large number of magnons in a ferromagnet with a single-ion anisotropy , 1977 .

[28]  John Casimir Slonczewski,et al.  Excitation of spin waves by an electric current , 1999 .

[29]  Johan Akerman,et al.  Decoherence and mode hopping in a magnetic tunnel junction based spin torque oscillator. , 2012, Physical review letters.

[30]  Sergei Urazhdin,et al.  Spin-torque nano-emitters for magnonic applications , 2012 .

[31]  D. Ralph,et al.  Spin transfer torques , 2007, 0711.4608.

[32]  B. Azzerboni,et al.  Excitation of self-localized spin-wave bullets by spin-polarized current in in-plane magnetized magnetic nanocontacts : A micromagnetic study , 2007 .

[33]  W. Rippard,et al.  Developments in nano-oscillators based upon spin-transfer point-contact devices , 2008 .

[34]  M. Sommacal,et al.  Propagation and control of nanoscale magnetic-droplet solitons , 2012, 1202.3421.

[35]  J. Åkerman,et al.  Combined Wide-Narrow Double Modulation of Spin-Torque Oscillators for Improved Linewidth During Communication , 2012, IEEE Transactions on Magnetics.

[36]  K. Mizushima,et al.  Signal-to-noise ratios in high-signal-transfer-rate read heads composed of spin-torque oscillators , 2010 .

[37]  P W Brouwer,et al.  Current-induced transverse spin-wave instability in a thin nanomagnet. , 2004, Physical review letters.

[38]  J. Åkerman,et al.  Utility of reactively sputtered CuNx films in spintronics devices , 2012 .

[39]  S. Bonetti,et al.  Spin-Torque Oscillator in an Electromagnet Package , 2012, IEEE Transactions on Magnetics.

[40]  V. Cros,et al.  Phase-locking of magnetic vortices mediated by antivortices. , 2009, Nature nanotechnology.

[41]  Vasil Tiberkevich,et al.  Generation linewidth of an auto-oscillator with a nonlinear frequency shift: spin-torque nano-oscillator. , 2008, Physical review letters.

[42]  Andrew D. Kent,et al.  Current-induced switching in single ferromagenetic layer nanopillar junctions , 2006 .

[43]  M. D. Stiles,et al.  Model for a collimated spin-wave beam generated by a single-layer spin torque nanocontact , 2007, 0710.2890.

[44]  William H. Rippard,et al.  Temperature dependence of spin-torque-driven self-oscillations , 2009 .

[45]  J. Bass,et al.  Excitation of a magnetic multilayer by an electric current , 1998 .

[46]  Johan Åkerman,et al.  Modulation of single and double spin torque oscillators , 2011 .

[47]  Yan Zhou,et al.  Spin Torque Oscillators and RF Currents—Modulation, Locking, and Ringing , 2011 .

[48]  Joo-Von Kim Spin-Torque Oscillators , 2012 .

[49]  Johan Akerman,et al.  Microwave Signal Generation in Single-Layer Nano-Contact Spin Torque Oscillators , 2013, IEEE Transactions on Magnetics.

[50]  D. Ralph,et al.  Microwave oscillations of a nanomagnet driven by a spin-polarized current , 2003, Nature.

[51]  S. Komineas Rotating vortex dipoles in ferromagnets. , 2007, Physical Review Letters.

[52]  V. Tiberkevich,et al.  Nonlinear Auto-Oscillator Theory of Microwave Generation by Spin-Polarized Current , 2009, IEEE Transactions on Magnetics.

[53]  Johan Akerman,et al.  Experimental evidence of self-localized and propagating spin wave modes in obliquely magnetized current-driven nanocontacts. , 2009, Physical review letters.

[54]  Ye. Pogoryelov,et al.  Spin-torque oscillator linewidth narrowing under current modulation , 2011, 1104.3167.

[55]  D. Ralph,et al.  Time-Domain Measurements of Nanomagnet Dynamics Driven by Spin-Transfer Torques , 2005, Science.

[56]  Andrei Slavin,et al.  Theory of mutual phase locking of spin-torque nanosized oscillators , 2006 .

[57]  M. Manfrini,et al.  Electrical properties of magnetic nanocontact devices computed using finite-element simulations , 2012 .

[58]  Berger Emission of spin waves by a magnetic multilayer traversed by a current. , 1996, Physical review. B, Condensed matter.

[59]  F. Mancoff,et al.  Direct observation of a propagating spin wave induced by spin-transfer torque. , 2011, Nature nanotechnology.

[60]  G Finocchio,et al.  Combined Frequency-Amplitude Nonlinear Modulation: Theory and Applications , 2010, IEEE Transactions on Magnetics.

[61]  W. Rippard,et al.  Direct-current induced dynamics in Co90 Fe10/Ni80 Fe20 point contacts. , 2003, Physical review letters.

[62]  Mark W. Keller,et al.  Theory for a dissipative droplet soliton excited by a spin torque nanocontact , 2010, 1008.1898.

[63]  Franck Badets,et al.  A GHz spintronic-based RF oscillator , 2009, 2009 IEEE International Solid-State Circuits Conference - Digest of Technical Papers.

[64]  Ye. Pogoryelov,et al.  Nonlinear frequency and amplitude modulation of a nanocontact-based spin-torque oscillator , 2009, 0910.2819.

[65]  J. C. Sloncxewski,et al.  Current-driven excitation of magnetic multilayers , 2003 .

[66]  J. Katine,et al.  Electrical measurement of spin-wave interactions of proximate spin transfer nanooscillators. , 2006, Physical review letters.

[67]  Johan AAkerman,et al.  Temperature dependence of linewidth in nanocontact based spin torque oscillators : Effect of multiple oscillatory modes , 2011, 1112.1280.