Likelihood-Based Data Association for Extended Object Tracking Using Sampling Methods

Environment perception is a key enabling technology in autonomous vehicles, and multiple object tracking is an important part of this. The use of high resolution sensors, such as automotive radar and lidar, leads to the extended object tracking problem, with multiple detections per tracked object. For computationally feasible multiple extended object tracking, the data association problem must be handled. Previous work has relied on a two-step approach, using clustering algorithms, together with assignment algorithms, to achieve this. In this paper, we show that it is possible to handle the data association in a single step that works directly on the desired likelihood function. Single step data association is beneficial, because it enables better use of the measurement model and the predicted multiobject density. For single step data association, we use algorithms based on stochastic sampling, and integrate them into a Poisson Multi-Bernoulli Mixture filter. In a simulation study, and in an experiment with Velodyne data acquired in an urban environment, four sampling algorithms are compared to clustering and assignment. The results from the simulations and the experiment show that single-step likelihood-based data association achieves better performance than two-step clustering and assignment data association does.

[1]  Klaus C. J. Dietmayer,et al.  Pedestrian tracking using Random Finite Sets , 2011, 14th International Conference on Information Fusion.

[2]  D. Salmond,et al.  Spatial distribution model for tracking extended objects , 2005 .

[3]  Karl Granström,et al.  Estimation and maintenance of measurement rates for multiple extended target tracking , 2012, 2012 15th International Conference on Information Fusion.

[4]  Jason L. Williams,et al.  Marginal multi-bernoulli filters: RFS derivation of MHT, JIPDA, and association-based member , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[5]  Dietrich Fränken,et al.  Tracking of Extended Objects and Group Targets Using Random Matrices , 2008, IEEE Transactions on Signal Processing.

[6]  M. Escobar,et al.  Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .

[7]  Ba-Ngu Vo,et al.  Labeled Random Finite Sets and the Bayes Multi-Target Tracking Filter , 2013, IEEE Transactions on Signal Processing.

[8]  S. Shankar Sastry,et al.  Markov Chain Monte Carlo Data Association for Multi-Target Tracking , 2009, IEEE Transactions on Automatic Control.

[9]  Radford M. Neal,et al.  A Split-Merge Markov chain Monte Carlo Procedure for the Dirichlet Process Mixture Model , 2004 .

[10]  Pontus Kielén,et al.  Mapping and localization using automotive lidar - Poisson multi-Bernoulli mapping and marginalized particle filter localization , 2017 .

[11]  Ba-Ngu Vo,et al.  Multiple Extended Target Tracking With Labeled Random Finite Sets , 2015, IEEE Transactions on Signal Processing.

[12]  Yaakov Bar-Shalom,et al.  A note on "book review tracking and data fusion: A handbook of algorithms" [Authors' reply] , 2013 .

[13]  J.W. Koch,et al.  Bayesian approach to extended object and cluster tracking using random matrices , 2008, IEEE Transactions on Aerospace and Electronic Systems.

[14]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[15]  Karl Granström,et al.  Metrics for performance evaluation of elliptic extended object tracking methods , 2016, 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI).

[16]  Christian Lundquist,et al.  Extended Target Tracking using a Gaussian-Mixture PHD Filter , 2017, IEEE Transactions on Aerospace and Electronic Systems.

[17]  Karl Granström,et al.  Gamma Gaussian inverse-Wishart Poisson multi-Bernoulli filter for extended target tracking , 2016, 2016 19th International Conference on Information Fusion (FUSION).

[18]  Katta G. Murty,et al.  Letter to the Editor - An Algorithm for Ranking all the Assignments in Order of Increasing Cost , 1968, Oper. Res..

[19]  Yaacov Ritov,et al.  Tracking Many Objects with Many Sensors , 1999, IJCAI.

[20]  Karl Granström,et al.  Pedestrian tracking using Velodyne data — Stochastic optimization for extended object tracking , 2017, 2017 IEEE Intelligent Vehicles Symposium (IV).

[21]  Karl Granström,et al.  Poisson Multi-Bernoulli Mixture Conjugate Prior for Multiple Extended Target Filtering , 2016, IEEE Transactions on Aerospace and Electronic Systems.

[22]  Karl Granström,et al.  Poisson Multi-Bernoulli Mapping Using Gibbs Sampling , 2017, IEEE Transactions on Signal Processing.

[23]  Y. Bar-Shalom,et al.  Multitarget Tracking , 2015 .

[24]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[25]  Christian Lundquist,et al.  An Extended Target CPHD Filter and a Gamma Gaussian Inverse Wishart Implementation , 2013, IEEE Journal of Selected Topics in Signal Processing.

[26]  Mark E. Campbell,et al.  Negative Information for Occlusion Reasoning in Dynamic Extended Multiobject Tracking , 2015, IEEE Transactions on Robotics.

[27]  Ba-Ngu Vo,et al.  An Efficient Implementation of the Generalized Labeled Multi-Bernoulli Filter , 2016, IEEE Transactions on Signal Processing.

[28]  Karl Granström,et al.  A phd Filter for Tracking Multiple Extended Targets Using Random Matrices , 2012, IEEE Transactions on Signal Processing.

[29]  D. Bertsekas The auction algorithm: A distributed relaxation method for the assignment problem , 1988 .

[30]  Manuel Stuebler,et al.  A fast implementation of the Labeled Multi-Bernoulli filter using gibbs sampling , 2017, 2017 IEEE Intelligent Vehicles Symposium (IV).

[31]  Karl Granström,et al.  Extended Object Tracking: Introduction, Overview and Applications , 2016, ArXiv.

[32]  L. Hong,et al.  Markov-chain Monte-Carlo approach for association probability evaluation , 2004 .

[33]  Ronald P. S. Mahler,et al.  Statistical Multisource-Multitarget Information Fusion , 2007 .