Mesh generation and refinement of polygonal data sets

This paper presents work in progress and continues a project devoted to developing shape modeling system based on implementation of radial based function (RBF) technology. In this paper, we study the opportunities offered by this technology to computer-aided design and computer graphics communities by looking at the problems of surface generation and enhancement. Experimental results are included to demonstrate the functionality of our mesh-modeling tool.

[1]  D. A. Field Laplacian smoothing and Delaunay triangulations , 1988 .

[2]  M. Garland,et al.  Multiresolution Modeling: Survey & Future Opportunities , 1999 .

[3]  Markus H. Gross,et al.  Efficient simplification of point-sampled surfaces , 2002, IEEE Visualization, 2002. VIS 2002..

[4]  Jean Duchon,et al.  Splines minimizing rotation-invariant semi-norms in Sobolev spaces , 1976, Constructive Theory of Functions of Several Variables.

[5]  Leif Kobbelt,et al.  Fast Mesh Decimation by Multiple-Choice Techniques , 2002, VMV.

[6]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[7]  Günther Greiner,et al.  Quadrilateral Remeshing , 2000, VMV.

[8]  Tosiyasu L. Kunii,et al.  Function Representation of Solids Reconstructed from Scattered Surface Points and Contours , 1995, Comput. Graph. Forum.

[9]  K. BeatsonR.,et al.  Fast Evaluation of Radial Basis Functions , 1998 .

[10]  Gabriel Taubin,et al.  A signal processing approach to fair surface design , 1995, SIGGRAPH.

[11]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[12]  Marc Alexa,et al.  Point set surfaces , 2001, Proceedings Visualization, 2001. VIS '01..

[13]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[14]  Jonathan Richard Shewchuk,et al.  What is a Good Linear Element? Interpolation, Conditioning, and Quality Measures , 2002, IMR.

[15]  J. L. Walsh,et al.  The theory of splines and their applications , 1969 .

[16]  Hans-Peter Seidel,et al.  A multi-scale approach to 3D scattered data interpolation with compactly supported basis functions , 2003, 2003 Shape Modeling International..

[17]  T. Belytschko,et al.  An efficient linear‐precision partition of unity basis for unstructured meshless methods , 2000 .

[18]  Richard Franke,et al.  Smooth interpolation of large sets of scattered data , 1980 .

[19]  James F. O'Brien,et al.  Shape transformation using variational implicit functions , 1999, SIGGRAPH Courses.

[20]  Michael Garland,et al.  Multiresolution Modeling: Survey and Future Opportunities , 1999, Eurographics.

[21]  Sunghee Choi,et al.  The power crust , 2001, SMA '01.

[22]  Holger Wendland,et al.  Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree , 1995, Adv. Comput. Math..

[23]  Pascal J. Frey,et al.  About Surface Remeshing , 2000, IMR.

[24]  Walter Schempp,et al.  Constructive theory of functions of several variables : proceedings of a conference held at Oberwolfach, April 25-May 1, 1976 , 1977 .

[25]  Alexander A. Pasko,et al.  Transformation of functionally defined shapes by extended space mappings , 1998, The Visual Computer.