Fabrication and characteristics of double-fused vertical-cavity lasers

[1]  John E. Bowers,et al.  Transverse-mode and polarisation characteristics of double-fused 1.52 mu m vertical-cavity lasers , 1995 .

[2]  J. J. Dudley,et al.  Double‐fused 1.52‐μm vertical‐cavity lasers , 1995 .

[3]  Importance of metalorganic vapor phase epitaxy growth conditions for the fabrication of GaInAsP strained quantum well lasers , 1994 .

[4]  Rajeev J Ram,et al.  Low threshold, wafer fused long wavelength vertical cavity lasers , 1994 .

[5]  Analysis of wafer fusing for 1.3 μm vertical cavity surface emitting lasers , 1993 .

[6]  H. Tanobe,et al.  Etching and Optical Characteristics in GaAs/GaAlAs Surface Emitting Laser Fabrication Using a Novel Spray Etch , 1992 .

[7]  Larsson,et al.  Optical absorption by free holes in heavily doped GaAs. , 1991, Physical review. B, Condensed matter.

[8]  U. Koren,et al.  Strain‐compensated strained‐layer superlattices for 1.5 μm wavelength lasers , 1991 .

[9]  J. P. Harbison,et al.  Independently addressable InGaAs/GaAs vertical-cavity surface-emitting laser arrays , 1991 .

[10]  Larry A. Coldren,et al.  Theoretical gain in strained InGaAs/AlGaAs quantum wells including valence‐band mixing effects , 1990 .

[11]  D. E. Mull,et al.  Wafer fusion: A novel technique for optoelectronic device fabrication and monolithic integration , 1990 .

[12]  Eli Yablonovitch,et al.  Band structure engineering of semiconductor lasers for optical communications , 1988 .

[13]  C. Henry,et al.  The effect of intervalence band absorption on the thermal behavior of InGaAsP lasers , 1983 .

[14]  R. Braunstein,et al.  Intervalence band transitions in gallium arsenide , 1959 .