On-Line Planarity Testing

The on-line planarity-testing problem consists of performing the following operations on a planar graph $G$: (i) testing if a new edge can be added to $G$ so that the resulting graph is itself planar; (ii) adding vertices and edges such that planarity is preserved. An efficient technique for on-line planarity testing of a graph is presented that uses $O(n)$ space and supports tests and insertions of vertices and edges in $O(\log n)$ time, where $n$ is the current number of vertices of $G$. The bounds for tests and vertex insertions are worst-case and the bound for edge insertions is amortized. We also present other applications of this technique to dynamic algorithms for planar graphs.

[1]  Giuseppe F. Italiano,et al.  Finding Paths and Deleting Edges in Directed Acyclic Graphs , 1988, Inf. Process. Lett..

[2]  David Eppstein,et al.  Maintenance of a minimum spanning forest in a dynamic planar graph , 1990, SODA '90.

[3]  Roberto Tamassia,et al.  On-Line Graph Algorithms with SPQR-Trees , 1990, ICALP.

[4]  Norishige Chiba,et al.  A Linear Algorithm for Embedding Planar Graphs Using PQ-Trees , 1985, J. Comput. Syst. Sci..

[5]  Greg N. Frederickson,et al.  Fast Algorithms for Shortest Paths in Planar Graphs, with Applications , 1987, SIAM J. Comput..

[6]  Robert E. Tarjan,et al.  Fast Algorithms for Finding Nearest Common Ancestors , 1984, SIAM J. Comput..

[7]  Michael T. Goodrich,et al.  Dynamic trees and dynamic point location , 1991, STOC '91.

[8]  Walter Schnyder,et al.  Embedding planar graphs on the grid , 1990, SODA '90.

[9]  Jeffrey Scott Vitter,et al.  A data structure for arc insertion and regular path finding , 1991, SODA '90.

[10]  Robert E. Tarjan,et al.  Storing a sparse table , 1979, CACM.

[11]  John H. Reif A Topological Approach to Dynamic Graph Connectivity , 1987, Inf. Process. Lett..

[12]  Ioannis G. Tollis,et al.  Dynamic Reachability in Planar Digraphs with One Source and One Sink , 1993, Theor. Comput. Sci..

[13]  Jan van Leeuwen,et al.  Worst-case Analysis of Set Union Algorithms , 1984, JACM.

[14]  Masaaki Kijima,et al.  THEORY AND ALGORITHMS OF , 1988 .

[15]  Ioannis G. Tollis,et al.  Area requirement and symmetry display in drawing graphs , 1989, SCG '89.

[16]  Giuseppe F. Italiano,et al.  Amortized Efficiency of a Path Retrieval Data Structure , 1986, Theor. Comput. Sci..

[17]  Vijaya Ramachandran,et al.  An optimal parallel algorithm for graph planarity , 1989, 30th Annual Symposium on Foundations of Computer Science.

[18]  Jeffrey Scott Vitter,et al.  Parallel Transitive Closure and Point Location in Planar Structures , 1991, SIAM J. Comput..

[19]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.

[20]  Robert E. Tarjan,et al.  Computing an st -Numbering , 1976, Theor. Comput. Sci..

[21]  János Pach,et al.  Small sets supporting fary embeddings of planar graphs , 1988, STOC '88.

[22]  Roberto Tamassia,et al.  A Dynamic Data Structure for Planar Graph Embedding (Extended Abstract) , 1988, ICALP.

[23]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[24]  Giuseppe F. Italiano,et al.  Dynamic Data Structures for Series Parallel Digraphs (Preliminary Version) , 1989, WADS.

[25]  Greg N. Frederickson,et al.  Data Structures for On-Line Updating of Minimum Spanning Trees, with Applications , 1985, SIAM J. Comput..

[26]  Roberto Tamassia,et al.  On-line maintenance of the four-connected components of a graph , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[27]  Roberto Tamassia,et al.  Fully Dynamic Point Location in a Monotone Subdivision , 1989, SIAM J. Comput..

[28]  Shimon Even,et al.  An On-Line Edge-Deletion Problem , 1981, JACM.

[29]  Chih-Chung Lin,et al.  On the dynamic shortest path problem , 1991 .

[30]  Zvi Galil,et al.  Fully dynamic algorithms for edge connectivity problems , 1991, STOC '91.

[31]  Roberto Tamassia,et al.  A unified approach to visibility representations of planar graphs , 1986, Discret. Comput. Geom..

[32]  Philip N. Klein,et al.  An efficient parallel algorithm for planarity , 1986, 27th Annual Symposium on Foundations of Computer Science (sfcs 1986).

[33]  Shimon Even,et al.  Updating distances in dynamic graphs , 1985 .

[34]  R. Tamassia,et al.  Dynamic expression trees and their applications , 1991, SODA '91.

[35]  Zvi Galil,et al.  Maintaining Biconnected Components of Dynamic Planar Graphs , 1991, ICALP.

[36]  Jan van Leeuwen,et al.  Maintenance of Transitive Closures and Transitive Reductions of Graphs , 1987, WG.

[37]  H. Whitney Non-Separable and Planar Graphs. , 1931, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Bowen Alpern,et al.  Incremental evaluation of computational circuits , 1990, SODA '90.

[39]  Peter Eades,et al.  An efficient heuristic for identifying a maximum weight planar subgraph , 1982 .

[40]  Robert E. Tarjan,et al.  Efficient Planarity Testing , 1974, JACM.

[41]  Giuseppe F. Italiano,et al.  Incremental algorithms for minimal length paths , 1991, SODA '90.

[42]  Pierre Rosenstiehl,et al.  A Depth-First-Search Characterization of Planarity , 1982 .

[43]  Mihalis Yannakakis,et al.  Four pages are necessary and sufficient for planar graphs , 1986, Symposium on the Theory of Computing.

[44]  Frank Harary,et al.  Graph Theory , 2016 .

[45]  Clyde L. Monma,et al.  On the Complexity of Covering Vertices by Faces in a Planar Graph , 1988, SIAM J. Comput..

[46]  Ming-Yang Kao,et al.  Towards overcoming the transitive-closure bottleneck: efficient parallel algorithms for planar digraphs , 1990, STOC '90.

[47]  Takao Nishizeki,et al.  Planar Graphs: Theory and Algorithms , 1988 .

[48]  Robert E. Tarjan,et al.  Dividing a Graph into Triconnected Components , 1973, SIAM J. Comput..

[49]  Uzi Vishkin,et al.  On Finding Lowest Common Ancestors: Simplification and Parallelization , 1988, AWOC.

[50]  Roberto Tamassia,et al.  Efficient Point Location in a Convex Spatial Cell-Complex , 1989, SIAM J. Comput..