A modified perturbed Lagrangian formulation for contact problems

[1]  Franz Chouly,et al.  Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments , 2014, Math. Comput..

[2]  Benedikt Schott,et al.  A new face-oriented stabilized XFEM approach for 2D and 3D incompressible Navier–Stokes equations , 2014 .

[3]  Juan José Ródenas,et al.  Imposing Dirichlet boundary conditions in hierarchical Cartesian meshes by means of stabilized Lagrange multipliers , 2014 .

[4]  John E. Dolbow,et al.  A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part II: Intersecting interfaces , 2013 .

[5]  M. Hammer Frictional mortar contact for finite deformation problems with synthetic contact kinematics , 2013 .

[6]  Juan José Ródenas,et al.  Efficient finite element methodology based on cartesian grids: application to structural shape optimization , 2013 .

[7]  John E. Dolbow,et al.  Stable imposition of stiff constraints in explicit dynamics for embedded finite element methods , 2012 .

[8]  John E. Dolbow,et al.  A robust Nitsche’s formulation for interface problems , 2012 .

[9]  Barbara Wohlmuth,et al.  An abstract framework for a priori estimates for contact problems in 3D with quadratic finite elements , 2012 .

[10]  Ramon Codina,et al.  A symmetric method for weakly imposing Dirichlet boundary conditions in embedded finite element meshes , 2012 .

[11]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .

[12]  Tod A. Laursen,et al.  A Nitsche embedded mesh method , 2012 .

[13]  Marie-Christine Baietto,et al.  Stabilized global–local X‐FEM for 3D non‐planar frictional crack using relevant meshes , 2011 .

[14]  Wolfgang A. Wall,et al.  Finite deformation frictional mortar contact using a semi‐smooth Newton method with consistent linearization , 2010 .

[15]  Peter Hansbo,et al.  Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method , 2010 .

[16]  Wolfgang A. Wall,et al.  A dual mortar approach for 3D finite deformation contact with consistent linearization , 2010 .

[17]  Ronaldo I. Borja,et al.  Stabilized low-order finite elements for frictional contact with the extended finite element method , 2010 .

[18]  Wolfgang A. Wall,et al.  An embedded Dirichlet formulation for 3D continua , 2010 .

[19]  Patrick Hild,et al.  A stabilized Lagrange multiplier method for the finite element approximation of contact problems in elastostatics , 2010, Numerische Mathematik.

[20]  Ramon Codina,et al.  Approximate imposition of boundary conditions in immersed boundary methods , 2009 .

[21]  P. Wriggers,et al.  A mortar-based frictional contact formulation for large deformations using Lagrange multipliers , 2009 .

[22]  Giorgio Zavarise,et al.  A modified node‐to‐segment algorithm passing the contact patch test , 2009 .

[23]  Samuel Geniaut,et al.  An X‐FEM approach for large sliding contact along discontinuities , 2009 .

[24]  Nicolas Moës,et al.  A stable Lagrange multiplier space for stiff interface conditions within the extended finite element method , 2009 .

[25]  Jaroslav Haslinger,et al.  A New Fictitious Domain Approach Inspired by the Extended Finite Element Method , 2009, SIAM J. Numer. Anal..

[26]  Ekkehard Ramm,et al.  A mortar based contact formulation for non-linear dynamics using dual Lagrange multipliers , 2008 .

[27]  Barbara I. Wohlmuth,et al.  A Primal-Dual Active Set Algorithm for Three-Dimensional Contact Problems with Coulomb Friction , 2008, SIAM J. Sci. Comput..

[28]  Tod A. Laursen,et al.  A segment-to-segment mortar contact method for quadratic elements and large deformations , 2008 .

[29]  P. Wriggers,et al.  A formulation for frictionless contact problems using a weak form introduced by Nitsche , 2007 .

[30]  Juan José Ródenas,et al.  Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR‐C technique , 2007 .

[31]  Peter Wriggers,et al.  Mortar based frictional contact formulation for higher order interpolations using the moving friction cone , 2006 .

[32]  Barbara Wohlmuth,et al.  A priori error estimates and an inexact primal-dual active set strategy for linear and quadratic finite elements applied to multibody contact problems , 2005 .

[33]  Barbara Wohlmuth,et al.  A primal–dual active set strategy for non-linear multibody contact problems , 2005 .

[34]  Peter Wriggers,et al.  Frictionless 2D Contact formulations for finite deformations based on the mortar method , 2005 .

[35]  Tod A. Laursen,et al.  Two dimensional mortar contact methods for large deformation frictional sliding , 2005 .

[36]  Peter Hansbo,et al.  A Lagrange multiplier method for the finite element solution of elliptic interface problems using non-matching meshes , 2005, Numerische Mathematik.

[37]  M. Puso,et al.  A mortar segment-to-segment contact method for large deformation solid mechanics , 2004 .

[38]  Michael A. Puso,et al.  A 3D mortar method for solid mechanics , 2004 .

[39]  Tod A. Laursen,et al.  A mortar segment-to-segment frictional contact method for large deformations , 2003 .

[40]  T. Laursen Computational Contact and Impact Mechanics , 2003 .

[41]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[42]  P. Wriggers,et al.  Computational Contact Mechanics , 2002 .

[43]  Patrick Hild,et al.  Quadratic finite element methods for unilateral contact problems , 2002 .

[44]  Patrice Coorevits,et al.  Mixed finite element methods for unilateral problems: convergence analysis and numerical studies , 2002, Math. Comput..

[45]  K. Bathe,et al.  Stability and patch test performance of contact discretizations and a new solution algorithm , 2001 .

[46]  T. Laursen,et al.  A mortar‐finite element formulation for frictional contact problems , 2000 .

[47]  Patrick Hild,et al.  Numerical Implementation of Two Nonconforming Finite Element Methods for Unilateral Contact , 2000 .

[48]  T. Strouboulis,et al.  The generalized finite element method: an example of its implementation and illustration of its performance , 2000 .

[49]  P. Wriggers,et al.  A segment-to-segment contact strategy , 1998 .

[50]  Faker Ben Belgacem,et al.  The mortar finite element method for contact problems , 1998 .

[51]  Rolf Stenberg,et al.  On some techniques for approximating boundary conditions in the finite element method , 1995 .

[52]  Helio J. C. Barbosa,et al.  Circumventing the Babuscka-Brezzi condition in mixed finite element approximations of elliptic variational inequalities , 1992 .

[53]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[54]  J. C. Simo,et al.  A perturbed Lagrangian formulation for the finite element solution of contact problems , 1985 .

[55]  F. Brezzi On the existence, uniqueness and approximation of saddle-point problems arising from lagrangian multipliers , 1974 .