Adaptive harmony search with best-based search strategy

Harmony search (HS) is a new evolutionary algorithm inspired by the process of music improvisation. During the past decade, HS has shown excellent performance in many fields. However, its search strategy often demonstrates insufficient exploitation ability when facing some complex practical problems. Moreover, the HS performance is significantly influenced by its control parameters. To enhance the search efficiency, an adaptive harmony search with best-based search strategy (ABHS) is proposed. In the search process, ABHS exploits the beneficial information from the global-best solution to improve the search ability, while it adaptively tunes its control parameters according to the feedback from the search process. Experiments are conducted on a set of classical test functions. The experimental results show that ABHS significantly enhances the search efficiency of HS.

[1]  P. N. Suganthan,et al.  Differential Evolution: A Survey of the State-of-the-Art , 2011, IEEE Transactions on Evolutionary Computation.

[2]  Ling Zheng,et al.  Self-adjusting harmony search-based feature selection , 2014, Soft Computing.

[3]  Ahmad Taher Azar,et al.  A novel hybrid feature selection method based on rough set and improved harmony search , 2015, Neural Computing and Applications.

[4]  R. P. Saini,et al.  Discrete harmony search based size optimization of Integrated Renewable Energy System for remote rural areas of Uttarakhand state in India , 2016 .

[5]  Victor O. K. Li,et al.  Chemical-Reaction-Inspired Metaheuristic for Optimization , 2010, IEEE Transactions on Evolutionary Computation.

[6]  Xingming Sun,et al.  Structural Minimax Probability Machine , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[7]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[8]  Mehmet Fatih Tasgetiren,et al.  An effective discrete harmony search algorithm for flexible job shop scheduling problem with fuzzy processing time , 2015 .

[9]  Ajith Abraham,et al.  An Improved Harmony Search Algorithm with Differential Mutation Operator , 2009, Fundam. Informaticae.

[10]  Jian Shen,et al.  A Novel Routing Protocol Providing Good Transmission Reliability in Underwater Sensor Networks , 2015 .

[11]  Xiaolei Wang,et al.  A hybrid optimization method of harmony search and opposition-based learning , 2012 .

[12]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[13]  Iván Amaya,et al.  Harmony Search algorithm: a variant with Self-regulated Fretwidth , 2015, Appl. Math. Comput..

[14]  Yaonan Wang,et al.  Hybrid parallel chaos optimization algorithm with harmony search algorithm , 2014, Appl. Soft Comput..

[15]  Carlos Alberto Cobos Lozada,et al.  GHS + LEM: Global-best Harmony Search using learnable evolution models , 2011, Appl. Math. Comput..

[16]  Ali Kattan,et al.  A dynamic self-adaptive harmony search algorithm for continuous optimization problems , 2013, Appl. Math. Comput..

[17]  Chandan Kumar Shiva,et al.  A novel quasi-oppositional harmony search algorithm for automatic generation control of power system , 2015, Appl. Soft Comput..

[18]  Xiao Zhi Gao,et al.  A memetic-inspired harmony search method in optimal wind generator design , 2015, Int. J. Mach. Learn. Cybern..

[19]  Zelda B. Zabinsky,et al.  A Numerical Evaluation of Several Stochastic Algorithms on Selected Continuous Global Optimization Test Problems , 2005, J. Glob. Optim..

[20]  Rajesh Kumar,et al.  An Intelligent Tuned Harmony Search algorithm for optimisation , 2012, Inf. Sci..

[21]  Hossein Nezamabadi-pour,et al.  GSA: A Gravitational Search Algorithm , 2009, Inf. Sci..

[22]  Jianhua Wu,et al.  Solving 0-1 knapsack problem by a novel global harmony search algorithm , 2011, Appl. Soft Comput..

[23]  Steven Li,et al.  Improved novel global harmony search with a new relaxation method for reliability optimization problems , 2015, Inf. Sci..

[24]  Sam Kwong,et al.  Efficient Motion and Disparity Estimation Optimization for Low Complexity Multiview Video Coding , 2015, IEEE Transactions on Broadcasting.

[25]  Tinghuai Ma,et al.  Social Network and Tag Sources Based Augmenting Collaborative Recommender System , 2015, IEICE Trans. Inf. Syst..

[26]  David B. Fogel,et al.  An introduction to simulated evolutionary optimization , 1994, IEEE Trans. Neural Networks.

[27]  Dalila Boughaci,et al.  Hybrid Harmony Search Combined with Stochastic Local Search for Feature Selection , 2015, Neural Processing Letters.

[28]  Ajith Abraham,et al.  A self adaptive harmony search based functional link higher order ANN for non-linear data classification , 2016, Neurocomputing.

[29]  Jong-Hwan Kim,et al.  Quantum-inspired evolutionary algorithm for a class of combinatorial optimization , 2002, IEEE Trans. Evol. Comput..

[30]  Víctor Yepes,et al.  Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges , 2015 .

[31]  Zhijian Wu,et al.  Multi-strategy ensemble artificial bee colony algorithm , 2014, Inf. Sci..

[32]  Ling Shao,et al.  A rapid learning algorithm for vehicle classification , 2015, Inf. Sci..

[33]  Vahid Vahidinasab,et al.  A modified harmony search method for environmental/economic load dispatch of real-world power systems , 2014 .

[34]  Iván Amaya,et al.  An improved variant of the conventional Harmony Search algorithm , 2014, Appl. Math. Comput..

[35]  Zong Woo Geem,et al.  A survey on applications of the harmony search algorithm , 2013, Eng. Appl. Artif. Intell..

[36]  Xiaofang Yuan,et al.  A self-adaptive multi-objective harmony search algorithm based on harmony memory variance , 2015, Appl. Soft Comput..

[37]  Quan-Ke Pan,et al.  An effective hybrid harmony search-based algorithm for solving multidimensional knapsack problems , 2015, Appl. Soft Comput..

[38]  Karim Salahshoor,et al.  Global Dynamic Harmony Search algorithm: GDHS , 2014, Appl. Math. Comput..

[39]  Iyad Abu Doush,et al.  Hybridizing Harmony Search algorithm with different mutation operators for continuous problems , 2014, Appl. Math. Comput..

[40]  Jianhua Wu,et al.  Novel global harmony search algorithm for unconstrained problems , 2010, Neurocomputing.

[41]  Zhijian Wu,et al.  A Thermodynamical Selection-Based Discrete Differential Evolution for the 0-1 Knapsack Problem , 2014, Entropy.

[42]  Hui Li,et al.  Enhanced Differential Evolution With Adaptive Strategies for Numerical Optimization , 2011, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[43]  Janez Brest,et al.  Self-Adapting Control Parameters in Differential Evolution: A Comparative Study on Numerical Benchmark Problems , 2006, IEEE Transactions on Evolutionary Computation.

[44]  Hui Wang,et al.  An enhanced gravitational search algorithm for global optimisation , 2015, Int. J. Wirel. Mob. Comput..

[45]  Hui Wang,et al.  Diversity enhanced particle swarm optimization with neighborhood search , 2013, Inf. Sci..

[46]  Amir Hossein Gandomi,et al.  Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems , 2011, Engineering with Computers.

[47]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[48]  Kwee-Bo Sim,et al.  Parameter-setting-free harmony search algorithm , 2010, Appl. Math. Comput..

[49]  Saeed Tavakoli,et al.  An intelligent global harmony search approach to continuous optimization problems , 2014, Appl. Math. Comput..

[50]  Dinesh Kumar,et al.  Parameter adaptive harmony search algorithm for unimodal and multimodal optimization problems , 2014, J. Comput. Sci..

[51]  Bin Gu,et al.  A Robust Regularization Path Algorithm for $\nu $ -Support Vector Classification , 2017, IEEE Transactions on Neural Networks and Learning Systems.

[52]  Zhijian Wu,et al.  Enhancing particle swarm optimization using generalized opposition-based learning , 2011, Inf. Sci..

[53]  Mehmet Fatih Tasgetiren,et al.  Dynamic multi-swarm particle swarm optimizer with harmony search , 2011, Expert Syst. Appl..

[54]  Yuhui Zheng,et al.  Image segmentation by generalized hierarchical fuzzy C-means algorithm , 2015, J. Intell. Fuzzy Syst..

[55]  Panos M. Pardalos,et al.  An improved adaptive binary Harmony Search algorithm , 2013, Inf. Sci..

[56]  George W. Irwin,et al.  An efficient harmony search with new pitch adjustment for dynamic economic dispatch , 2014 .

[57]  Steven Li,et al.  A simplified binary harmony search algorithm for large scale 0-1 knapsack problems , 2015, Expert Syst. Appl..

[58]  Mahamed G. H. Omran,et al.  Global-best harmony search , 2008, Appl. Math. Comput..

[59]  Salwani Abdullah,et al.  A multi-population harmony search algorithm with external archive for dynamic optimization problems , 2014, Inf. Sci..

[60]  Arthur C. Sanderson,et al.  JADE: Adaptive Differential Evolution With Optional External Archive , 2009, IEEE Transactions on Evolutionary Computation.

[61]  Zhijian Wu,et al.  An Enhanced Differential Evolution with Elite Chaotic Local Search , 2015, Comput. Intell. Neurosci..

[62]  João Paulo Papa,et al.  Fine-tuning Deep Belief Networks using Harmony Search , 2016, Appl. Soft Comput..

[63]  Steven Li,et al.  Solving large-scale multidimensional knapsack problems with a new binary harmony search algorithm , 2015, Comput. Oper. Res..

[64]  Jun Zhang,et al.  Orthogonal Learning Particle Swarm Optimization , 2011, IEEE Trans. Evol. Comput..

[65]  Jing-fang Zhang,et al.  An improved global-best harmony search algorithm for faster optimization , 2014, Expert Syst. Appl..

[66]  Yin-Fu Huang,et al.  Self-adaptive harmony search algorithm for optimization , 2010, Expert Syst. Appl..

[67]  Zong Woo Geem,et al.  A New Heuristic Optimization Algorithm: Harmony Search , 2001, Simul..

[68]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[69]  Mohammed El-Abd,et al.  An improved global-best harmony search algorithm , 2013, Appl. Math. Comput..

[70]  Bin Gu,et al.  Incremental learning for ν-Support Vector Regression , 2015, Neural Networks.

[71]  Q. Henry Wu,et al.  Group Search Optimizer: An Optimization Algorithm Inspired by Animal Searching Behavior , 2009, IEEE Transactions on Evolutionary Computation.

[72]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[73]  Jing J. Liang,et al.  A self-adaptive global best harmony search algorithm for continuous optimization problems , 2010, Appl. Math. Comput..

[74]  Quan-Ke Pan,et al.  Harmony search algorithm with dynamic control parameters , 2012, Appl. Math. Comput..

[75]  José Neves,et al.  The fully informed particle swarm: simpler, maybe better , 2004, IEEE Transactions on Evolutionary Computation.

[76]  Luo Liu,et al.  Hybridizing harmony search with biogeography based optimization for global numerical optimization , 2013 .

[77]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[78]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[79]  Amir Hossein Gandomi,et al.  Hybridizing harmony search algorithm with cuckoo search for global numerical optimization , 2014, Soft Computing.

[80]  George W. Irwin,et al.  A hybrid harmony search with arithmetic crossover operation for economic dispatch , 2014 .

[81]  Kejun Zhang,et al.  Enhanced social emotional optimisation algorithm with generalised opposition-based learning , 2015, Int. J. Comput. Sci. Math..

[82]  M. Fesanghary,et al.  An improved harmony search algorithm for solving optimization problems , 2007, Appl. Math. Comput..

[83]  P. N. Suganthan,et al.  Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization , 2009, IEEE Transactions on Evolutionary Computation.