Piecewise Linear Valued Constraint Satisfaction Problems with Fixed Number of Variables

Many combinatorial optimisation problems can be modelled as valued constraint satisfaction problems. In this paper, we present a polynomial-time algorithm solving the valued constraint satisfaction problem for a fixed number of variables and for piecewise linear cost functions. Our algorithm finds the infimum of a piecewise linear function and decides whether it is a proper minimum.

[1]  Manuel Bodirsky,et al.  Non-dichotomies in Constraint Satisfaction Complexity , 2008, ICALP.

[2]  John F. Canny,et al.  Some algebraic and geometric computations in PSPACE , 1988, STOC '88.

[3]  Kees Roos Linear Optimization: Theorems of the Alternative , 2009, Encyclopedia of Optimization.

[4]  George E. Collins,et al.  Quantifier elimination for real closed fields by cylindrical algebraic decomposition , 1975 .

[5]  Marcin Kozik,et al.  Algebraic Properties of Valued Constraint Satisfaction Problem , 2014, ICALP.

[6]  M. H. Wright The interior-point revolution in optimization: History, recent developments, and lasting consequences , 2004 .

[7]  Christer Bäckström,et al.  A Unifying Approach to Temporal Constraint Reasoning , 1998, Artif. Intell..

[8]  Andrei A. Bulatov,et al.  A Dichotomy Theorem for Nonuniform CSPs , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[9]  Leonid Khachiyan,et al.  Integer Optimization on Convex Semialgebraic Sets , 2000, Discret. Comput. Geom..

[10]  Nimrod Megiddo,et al.  Linear Programming in Linear Time When the Dimension Is Fixed , 1984, JACM.

[11]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[12]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[13]  Vladimir Kolmogorov,et al.  The Complexity of General-Valued CSPs , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.

[14]  Bastian Goldlücke,et al.  Variational Analysis , 2014, Computer Vision, A Reference Guide.

[15]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[16]  Dmitriy Zhuk,et al.  A Proof of CSP Dichotomy Conjecture , 2017, 2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS).

[17]  Th. Motzkin Beiträge zur Theorie der linearen Ungleichungen , 1936 .

[18]  Manuel Bodirsky,et al.  Constraint Satisfaction Problems over Numeric Domains , 2017, The Constraint Satisfaction Problem.

[19]  Hendrik W. Lenstra,et al.  Integer Programming with a Fixed Number of Variables , 1983, Math. Oper. Res..

[20]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[21]  Vladimir Kolmogorov,et al.  The Power of Linear Programming for General-Valued CSPs , 2013, SIAM J. Comput..