Representations of Conformal Nets, Universal C*-Algebras and K-Theory

[1]  R. Longo,et al.  Superconformal nets and noncommutative geometry , 2013, 1304.4062.

[2]  E. Vasselli,et al.  A New Light on Nets of C*-Algebras and Their Representations , 2010, 1005.3178.

[3]  D. Freed,et al.  Loop groups and twisted K-theory III , 2011 .

[4]  D. Freed,et al.  Loop groups and twisted K‐theory I , 2007, 0711.1906.

[5]  David E. Evans,et al.  Modular Invariants and Twisted Equivariant K-theory II: Dynkin diagram symmetries , 2010, 1012.1634.

[6]  Roberto Longo,et al.  Spectral Triples and the Super-Virasoro Algebra , 2008, 0811.4128.

[7]  David E. Evans,et al.  Modular Invariants and Twisted Equivariant K-theory , 2008, 0807.3759.

[8]  R. Longo,et al.  Structure and Classification of Superconformal Nets , 2007, 0705.3609.

[9]  M. Weiner Conformal covariance and related properties of chiral QFT , 2007, math/0703336.

[10]  D. Buchholz,et al.  Nuclearity and Thermal States in Conformal Field Theory , 2006, math-ph/0603083.

[11]  R. Longo,et al.  Local conformal nets arising from framed vertex operator algebras , 2004, math/0407263.

[12]  M. Weiner Conformal Covariance and Positivity of Energy in Charged Sectors , 2005, math-ph/0507066.

[13]  Fengjun Xu Mirror Extensions of Local Nets , 2005, math/0505367.

[14]  M. Weiner,et al.  On the Uniqueness of Diffeomorphism Symmetry in Conformal Field Theory , 2004, math/0407190.

[15]  R. Longo,et al.  Noncommutative Spectral Invariants and Black Hole Entropy , 2004, math-ph/0405037.

[16]  R. Longo,et al.  Classification of local conformal nets , 2005 .

[17]  C. Dong,et al.  Conformal nets associated with lattices and their orbifolds , 2004, math/0411499.

[18]  K. Fredenhagen,et al.  Implementation of Conformal Covariance by Diffeomorphism Symmetry , 2003, math-ph/0312017.

[19]  R. Longo,et al.  Topological Sectors and a Dichotomy in Conformal Field Theory , 2003, math/0309366.

[20]  S. Carpi On the Representation Theory of Virasoro Nets , 2003, math/0306425.

[21]  R. Longo,et al.  Classification of local conformal nets. Case c < 1 , 2002, Annals of Mathematics.

[22]  S. Carpi The Virasoro Algebra and Sectors with Infinite Statistical Dimension , 2002, math/0203027.

[23]  R. Longo Conformal Subnets and Intermediate Subfactors , 2001, math/0102196.

[24]  竹崎 正道 Theory of operator algebras , 2002 .

[25]  M. Izumi,et al.  INCLUSIONS OF SIMPLE C ∗-ALGEBRAS , 2001 .

[26]  Roberto Longo,et al.  Notes for a Quantum Index Theorem , 2000, math/0003082.

[27]  Yasuyuki Kawahigashi Multi-Interval Subfactors and Modularity¶of Representations in Conformal Field Theory , 1999, math/9903104.

[28]  F. Xu Algebraic orbifold conformal field theories. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[29]  S. Yamagami Notes on Amenability of Commutative Fusion Algebras , 1999 .

[30]  Fengjun Xu 3-MANIFOLD INVARIANTS FROM COSETS , 1999, math/9907077.

[31]  Pierre Mathieu,et al.  Conformal Field Theory , 1999 .

[32]  A. Wassermann Operator algebras and conformal field theory III. Fusion of positive energy representations of LSU(N) using bounded operators , 1998, math/9806031.

[33]  B. Blackadar Operator Algebras , 1998 .

[34]  Fengjun Xu JONES-WASSERMANN SUBFACTORS FOR DISCONNECTED INTERVALS , 1997, q-alg/9704003.

[35]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[36]  R. Longo,et al.  A theory of dimension , 1996, funct-an/9604008.

[37]  K. Fredenhagen,et al.  Conformal Haag-Kastler nets, pointlike localized fields and the existence of operator product expansions , 1996 .

[38]  R. Longo,et al.  The conformal spin and statistics theorem , 1995, hep-th/9505059.

[39]  S. Popa Classification of subfactors and their endomorphisms , 1995 .

[40]  F. Gabbiani,et al.  Operator algebras and conformal field theory , 1993 .

[41]  R. Longo,et al.  Modular structure and duality in conformal quantum field theory , 1993, funct-an/9302008.

[42]  Jϋrg Frόhlich Operator Algebras and Conformal Field Theory , 1993 .

[43]  K. Fredenhagen,et al.  Superselection sectors with braid group statistics and exchange algebras. 2. Geometric aspects and conformal covariance , 1992 .

[44]  R. Longo,et al.  Relativistic invariance and charge conjugation in quantum field theory , 1992 .

[45]  R. Haag,et al.  Local quantum physics , 1992 .

[46]  Roberto Longo,et al.  Index of subfactors and statistics of quantum fields. I , 1989 .

[47]  Bert Schroer,et al.  Superselection sectors with braid group statistics and exchange algebras , 1989 .

[48]  D. Buchholz,et al.  The Current Algebra on the Circle as a Germ of Local Field Theories , 1988 .

[49]  A. Jaffe,et al.  QuantumK-theory , 1988 .

[50]  B. Blackadar,et al.  K-Theory for Operator Algebras , 1986 .

[51]  S. Popa,et al.  Entropy and index for subfactors , 1986 .

[52]  Roberto Longo,et al.  Standard and split inclusions of von Neumann algebras , 1984 .

[53]  V. Jones Index for subfactors , 1983 .

[54]  Rudolf Haag,et al.  Local observables and particle statistics II , 1971 .

[55]  John E. Roberts,et al.  Local observables and particle statistics I , 1971 .

[56]  竹崎 正道 Tomita's theory of modular Hilbert algebras and its applications , 1970 .

[57]  K. Rehren Braid Group Statistics and their Superselection Rules , 2022 .