DIFFUSE INTERFACE THEORY FOR HOMOGENEOUS VAPOR CONDENSATION

The excess free energy of nuclei is evaluated in terms of a characteristic interface thickness related to bulk physical properties. A curvature correction to the surface tension of nuclei up to second order in terms of the characteristic thickness is obtained. A nucleation theory free of adjustable parameters is presented. The predictions are compared with experiments on homogeneous condensation of nonpolar (nonane, toluene, Ar), polar (water, alcohols), and metal (Fe, Pb, Hg, Cs) vapors. For molecular liquids the applicability of the theory correlates with the surface entropy. In case of nonpolar, weakly polar, and metallic substances the experiments are described better than by the classical theory.

[1]  D. Stansfield The Surface Tensions of Liquid Argon and Nitrogen , 1958 .

[2]  T. Schmeling,et al.  Equilibrium vapor pressure measurements for the n-alcohols in the temperature range from −30°C to +30°C , 1983 .

[3]  F. Hensel Metal-nonmetal transition in expanded liquid metals and metal clusters , 1990 .

[4]  G. Patey,et al.  Ground state configurations of model molecular clusters , 1994 .

[5]  F. Hensel,et al.  Homogeneous nucleation of mercury vapor , 1987 .

[6]  E. R. Cohen,et al.  Translation-Rotation Paradox in the Theory of Nucleation , 1968 .

[7]  J. Katz,et al.  Initial investigation of the homogeneous nucleation of cesium vapor , 1994 .

[8]  W. Courtney,et al.  Remarks on Homogeneous Nucleation , 1961 .

[9]  H. Reiss Treatment of droplike clusters by means of the classical phase integral in nucleation theory , 1970 .

[10]  A. Laaksonen,et al.  Nucleation: measurements, theory, and atmospheric applications. , 1995, Annual review of physical chemistry.

[11]  C. Bruin,et al.  Molecular dynamics study of the curvature correction to the surface tension , 1994 .

[12]  F. P. Buff Spherical Interface. II. Molecular Theory , 1955 .

[13]  P. Teixeira,et al.  Density-functional theory for the interfacial properties of a dipolar fluid , 1991 .

[14]  L. Gránásy,et al.  On the diffuse interface theory of nucleation , 1994 .

[15]  R. Good Surface Entropy and Surface Orientation of Polar Liquids , 1957 .

[16]  Homogeneous nucleation in metal vapors. 3. Temperature dependence of the critical supersaturation ratio for iron, lead, and bismuth , 1977 .

[17]  John W. Cahn,et al.  Free Energy of a Nonuniform System. II. Thermodynamic Basis , 1959 .

[18]  A. Pohorille,et al.  Surface potential of the water liquid-vapor interface. , 1988, The Journal of chemical physics.

[19]  M. S. El-shall,et al.  Vapor phase homogeneous nucleation of acetonitrile: the effect of dipole—dipole interaction , 1991 .

[20]  J. Kirkwood,et al.  The Statistical Mechanical Theory of Transport Processes. IV. The Equations of Hydrodynamics , 1950 .

[21]  R. Strey,et al.  Surface tension measurements for the n‐alcohols in the temperature range from −40°C to + 40°C , 1983 .

[22]  D. Oxtoby,et al.  Gas–liquid nucleation in Lennard‐Jones fluids , 1991 .

[23]  J. Katz,et al.  The thermodynamics of cluster formation in nucleation theory , 1972 .

[24]  G. Meier,et al.  A semiphenomenological droplet model of homogeneous nucleation from the vapor phase , 1993 .

[25]  S. Rice,et al.  A pseudoatom theory for the liquid–vapor interface of simple metals: Computer simulation studies of sodium and cesium , 1983 .

[26]  M. S. El-shall,et al.  Analysis of homogeneous nucleation data of polar molecules: Vapor association, dipole orientation, and elongated clusters , 1993 .

[27]  Y. Viisanen,et al.  Homogeneous nucleation rates for n‐butanol , 1994 .

[28]  Kalikmanov,et al.  Self-consistent cluster approach to the homogeneous kinetic nucleation theory. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  Stuart A. Rice,et al.  Molecular dynamics studies of the liquid-vapor interface of water , 1991 .

[30]  V. Talanquer,et al.  Dynamical density functional theory of gas-liquid nucleation , 1994 .

[31]  A. F. Bakker,et al.  Molecular dynamics of the surface tension of a drop , 1992 .

[32]  A. Laaksonen,et al.  SOME CONSEQUENCES OF THE NUCLEATION THEOREM FOR BINARY FLUIDS , 1995 .

[33]  Shen,et al.  Vibrational spectroscopy of water at the vapor/water interface. , 1993, Physical review letters.

[34]  D. Bedeaux,et al.  Pressure tensor of a spherical interface , 1992 .

[35]  C. Gray,et al.  Density-functional theory of the water liquid-vapour interface , 1992 .

[36]  J. Lothe,et al.  RECONSIDERATIONS OF NUCLEATION THEORY , 1962 .

[37]  J. Farges,et al.  Crystalline and noncrystalline effects in electron diffraction patterns from small clusters in an argon cluster beam , 1973 .

[38]  K. Gubbins,et al.  A molecular dynamics study of liquid drops , 1984 .

[39]  R. Becker,et al.  Kinetische Behandlung der Keimbildung in übersättigten Dämpfen , 1935 .

[40]  S. W. Leeuw,et al.  Dielectric behavior and multibody orientational correlations of dipolar molecular liquids , 1984 .

[41]  Robert J. Anderson,et al.  Homogeneous nucleation rate measurements for water over a wide range of temperature and nucleation rate , 1983 .

[42]  S. Rice,et al.  Determination of the density profile in the liquid–vapor interface near the triple point , 1978 .

[43]  J. Hirth,et al.  On the theory of homogeneous nucleation and spinodal decomposition in condensation from the vapor phase , 1988 .

[44]  G. Stein,et al.  Homogeneous nucleation of argon carried in helium in supersonic nozzle flow , 1978 .

[45]  S. Girshick Comment on: "Self-consistency correction to homogeneous nucleation theory" , 1991 .

[46]  L. Gránásy ‘Anomalous’ nucleation prefactors revisited: a diffuse interface analysis of crystal nucleation in oxide glasses , 1995 .

[47]  Andersen,et al.  10(6)-particle molecular-dynamics study of homogeneous nucleation of crystals in a supercooled atomic liquid. , 1990, Physical review. B, Condensed matter.

[48]  Dietrich Stauffer,et al.  Statistical theory of nucleation, condensation and coagulation , 1976 .

[49]  G. W. Adams,et al.  Homogeneous nucleation of toluene , 1983 .

[50]  I. Ford,et al.  Modification of the Dillmann–Meier theory of homogeneous nucleation , 1993 .

[51]  A. Dillmann,et al.  A refined droplet approach to the problem of homogeneous nucleation from the vapor phase , 1991 .

[52]  Y. Viisanen,et al.  Measurement of the molecular content of binary nuclei. Use of the nucleation rate surface for ethanol–hexanol , 1993 .

[53]  H. Reiss,et al.  The Factor 1/S in the Classical Theory of Nucleation , 1994 .

[54]  V. Talanquer,et al.  Density functional theory of nucleation: A semiempirical approach , 1995 .