Mobile app recommendation

Given the ubiquitous and critical role of mobile apps in people's lives as well as the sheer size of the market, developing effective mobile app recommendation methods that can help users locate th...

[1]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[2]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[3]  Susan T. Dumais,et al.  Partially labeled topic models for interpretable text mining , 2011, KDD.

[4]  Shuang-Hong Yang,et al.  Functional matrix factorizations for cold-start recommendation , 2011, SIGIR.

[5]  Susan T. Dumais,et al.  Characterizing Microblogs with Topic Models , 2010, ICWSM.

[6]  Thomas Hofmann,et al.  Collaborative filtering via gaussian probabilistic latent semantic analysis , 2003, SIGIR.

[7]  Wei Chu,et al.  Information Services]: Web-based services , 2022 .

[8]  Domonkos Tikk,et al.  Matrix factorization and neighbor based algorithms for the netflix prize problem , 2008, RecSys '08.

[9]  Anindya Datta,et al.  Serendipitous Recommendation for Mobile Apps Using Item-Item Similarity Graph , 2013, AIRS.

[10]  Daniel Nikovski,et al.  Induction of compact decision trees for personalized recommendation , 2006, SAC.

[11]  Hao Ma,et al.  An experimental study on implicit social recommendation , 2013, SIGIR.

[12]  Yue Xu,et al.  Time-aware topic recommendation based on micro-blogs , 2012, CIKM.

[13]  John Riedl,et al.  An Algorithmic Framework for Performing Collaborative Filtering , 1999, SIGIR Forum.

[14]  Xing Xie,et al.  Collaborative Filtering Meets Mobile Recommendation: A User-Centered Approach , 2010, AAAI.

[15]  David M. Pennock,et al.  Categories and Subject Descriptors , 2001 .

[16]  Robin D. Burke,et al.  Hybrid Web Recommender Systems , 2007, The Adaptive Web.

[17]  Wen-Chih Peng,et al.  On mining mobile apps usage behavior for predicting apps usage in smartphones , 2013, CIKM.

[18]  Qiang Yang,et al.  Scalable collaborative filtering using cluster-based smoothing , 2005, SIGIR '05.

[19]  Ruslan Salakhutdinov,et al.  Bayesian probabilistic matrix factorization using Markov chain Monte Carlo , 2008, ICML '08.

[20]  Martin Ester,et al.  A matrix factorization technique with trust propagation for recommendation in social networks , 2010, RecSys '10.

[21]  Ramesh Nallapati,et al.  Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora , 2009, EMNLP.

[22]  Taghi M. Khoshgoftaar,et al.  Collaborative Filtering for Multi-class Data Using Belief Nets Algorithms , 2006, 2006 18th IEEE International Conference on Tools with Artificial Intelligence (ICTAI'06).

[23]  Taghi M. Khoshgoftaar,et al.  A Survey of Collaborative Filtering Techniques , 2009, Adv. Artif. Intell..

[24]  Xin Jin,et al.  Semantically Enhanced Collaborative Filtering on the Web , 2003, EWMF.

[25]  Ana Belén Barragáns-Martínez,et al.  Which App? A recommender system of applications in markets: Implementation of the service for monitoring users' interaction , 2012, Expert Syst. Appl..

[26]  Michael J. Pazzani,et al.  A learning agent for wireless news access , 2000, IUI '00.

[27]  Qiang Xu,et al.  Identifying diverse usage behaviors of smartphone apps , 2011, IMC '11.

[28]  Yehuda Koren,et al.  Advances in Collaborative Filtering , 2011, Recommender Systems Handbook.

[29]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[30]  Alan Said,et al.  Putting things in context: Challenge on Context-Aware Movie Recommendation , 2010 .

[31]  Chao Liu,et al.  Recommender systems with social regularization , 2011, WSDM '11.

[32]  Romel Ayalew Consumer behaviour in Apple's App Store , 2011 .

[33]  Deepak Agarwal,et al.  fLDA: matrix factorization through latent dirichlet allocation , 2010, WSDM '10.

[34]  M. A. Sasse,et al.  ’Knowing me, knowing you’ — Using profiles and social networking to improve recommender systems , 2006 .

[35]  Hsinchun Chen,et al.  Applying associative retrieval techniques to alleviate the sparsity problem in collaborative filtering , 2004, TOIS.

[36]  Simon Moritz,et al.  Utilizing implicit feedback and context to recommend mobile applications from first use , 2011, CaRR '11.

[37]  Mark Claypool,et al.  Combining Content-Based and Collaborative Filters in an Online Newspaper , 1999, SIGIR 1999.

[38]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[39]  William W. Cohen,et al.  Recommendation as Classification: Using Social and Content-Based Information in Recommendation , 1998, AAAI/IAAI.

[40]  Bong-Jin Yum,et al.  Collaborative filtering based on iterative principal component analysis , 2005, Expert Syst. Appl..

[41]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[42]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[43]  Joemon M. Jose,et al.  Handling data sparsity in collaborative filtering using emotion and semantic based features , 2011, SIGIR.

[44]  Chong Wang,et al.  Collaborative topic modeling for recommending scientific articles , 2011, KDD.

[45]  Michael J. Pazzani,et al.  Learning Collaborative Information Filters , 1998, ICML.

[46]  W. Bruce Croft,et al.  LDA-based document models for ad-hoc retrieval , 2006, SIGIR.

[47]  Jennifer Golbeck,et al.  Generating Predictive Movie Recommendations from Trust in Social Networks , 2006, iTrust.

[48]  Qi He,et al.  TwitterRank: finding topic-sensitive influential twitterers , 2010, WSDM '10.

[49]  Joseph Price,et al.  Measures of Solution Accuracy in Case-Based Reasoning Systems , 2004, ECCBR.

[50]  Marco Gori,et al.  A Random-Walk Based Scoring Algorithm Applied to Recommender Engines , 2006, WEBKDD.

[51]  Geoffrey E. Hinton,et al.  Restricted Boltzmann machines for collaborative filtering , 2007, ICML '07.

[52]  Tat-Seng Chua,et al.  Addressing cold-start in app recommendation: latent user models constructed from twitter followers , 2013, SIGIR.

[53]  John Riedl,et al.  GroupLens: an open architecture for collaborative filtering of netnews , 1994, CSCW '94.

[54]  François Yvon,et al.  Using LDA to detect semantically incoherent documents , 2008, CoNLL.

[55]  Roberto Turrin,et al.  Performance of recommender algorithms on top-n recommendation tasks , 2010, RecSys '10.

[56]  Danielle S. McNamara,et al.  Handbook of latent semantic analysis , 2007 .

[57]  Michael R. Lyu,et al.  SoRec: social recommendation using probabilistic matrix factorization , 2008, CIKM '08.

[58]  Bamshad Mobasher,et al.  A Hybrid Web Personalization Model Based on Site Connectivity , 2003 .

[59]  Yoon Ho Cho,et al.  A personalized recommender system based on web usage mining and decision tree induction , 2002, Expert Syst. Appl..

[60]  Zoran Obradovic,et al.  Collaborative Filtering Using a Regression-Based Approach , 2003, Knowledge and Information Systems.

[61]  Hui Xiong,et al.  Ranking fraud detection for mobile apps: a holistic view , 2013, CIKM.

[62]  Loriene Roy,et al.  Content-based book recommending using learning for text categorization , 1999, DL '00.

[63]  Ziqi Wang,et al.  Graph-Based Recommendation on Social Networks , 2010, 2010 12th International Asia-Pacific Web Conference.

[64]  Jian Wang,et al.  Opportunity model for e-commerce recommendation: right product; right time , 2013, SIGIR.

[65]  Guanling Chen,et al.  AppJoy: personalized mobile application discovery , 2011, MobiSys '11.

[66]  Bradley N. Miller,et al.  PocketLens: Toward a personal recommender system , 2004, TOIS.

[67]  Sean M. McNee,et al.  Improving recommendation lists through topic diversification , 2005, WWW '05.

[68]  Punam Bedi,et al.  Trust Based Recommender System for Semantic Web , 2007, IJCAI.

[69]  Chao Liu,et al.  Wisdom of the better few: cold start recommendation via representative based rating elicitation , 2011, RecSys '11.

[70]  Yehuda Koren,et al.  Modeling relationships at multiple scales to improve accuracy of large recommender systems , 2007, KDD '07.

[71]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[72]  Krishna P. Gummadi,et al.  Measuring User Influence in Twitter: The Million Follower Fallacy , 2010, ICWSM.

[73]  Thomas Hofmann,et al.  Latent Class Models for Collaborative Filtering , 1999, IJCAI.

[74]  John Zimmerman,et al.  TV Content Recommender System , 2000, AAAI/IAAI.

[75]  Thomas Hofmann,et al.  Latent semantic models for collaborative filtering , 2004, TOIS.

[76]  Michael J. Pazzani,et al.  User Modeling for Adaptive News Access , 2000, User Modeling and User-Adapted Interaction.

[77]  Jian Wang,et al.  Unified Recommendation and Search in E-Commerce , 2012, AIRS.

[78]  Michael J. Pazzani,et al.  Collaborative Filtering with the Simple Bayesian Classifier , 2000, PRICAI.

[79]  Andreas Stafylopatis,et al.  A hybrid movie recommender system based on neural networks , 2005, 5th International Conference on Intelligent Systems Design and Applications (ISDA'05).

[80]  Duncan J. Watts,et al.  Who says what to whom on twitter , 2011, WWW.

[81]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.

[82]  David M. Blei,et al.  Probabilistic topic models , 2012, Commun. ACM.

[83]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[84]  Shankar Kumar,et al.  Video suggestion and discovery for youtube: taking random walks through the view graph , 2008, WWW.

[85]  Philip S. Yu,et al.  Horting hatches an egg: a new graph-theoretic approach to collaborative filtering , 1999, KDD '99.

[86]  Wang-Chien Lee,et al.  A straw shows which way the wind blows: ranking potentially popular items from early votes , 2012, WSDM '12.

[87]  Venkata Rama Kiran Garimella,et al.  Who watches (and shares) what on youtube? and when?: using twitter to understand youtube viewership , 2013, WSDM.

[88]  Kenneth Y. Goldberg,et al.  Eigentaste: A Constant Time Collaborative Filtering Algorithm , 2001, Information Retrieval.

[89]  C. Dennis,et al.  Engaging customers on Facebook: Challenges for e-retailers , 2011 .

[90]  Daniel Lemire,et al.  Slope One Predictors for Online Rating-Based Collaborative Filtering , 2007, SDM.