Relaxation Times of Markov Chains in Statistical Mechanics and Combinatorial Structures

In Markov chain Monte Carlo theory a particular Markov chain is run for a very long time until its distribution is close enough to the equilibrium measure. In recent years, for models of statistical mechanics and of theoretical computer science, there has been a flourishing of new mathematical ideas and techniques to rigorously control the time it takes for the chain to equilibrate. This has provided a fruitful interaction between the two fields and the purpose of this paper is to provide a comprehensive review of the state of the art.

[1]  R. B. Potts Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  J. Doob Stochastic processes , 1953 .

[3]  M. Kac Foundations of Kinetic Theory , 1956 .

[4]  R. Dobrushin The problem of uniqueness of a gibbsian random field and the problem of phase transitions , 1968 .

[5]  Robert B. Griffiths,et al.  Nonanalytic Behavior Above the Critical Point in a Random Ising Ferromagnet , 1969 .

[6]  J. Cheeger A lower bound for the smallest eigenvalue of the Laplacian , 1969 .

[7]  R. Dobrushin Prescribing a System of Random Variables by Conditional Distributions , 1970 .

[8]  C. Fortuin,et al.  On the random-cluster model: I. Introduction and relation to other models , 1972 .

[9]  S. Kirkpatrick,et al.  Solvable Model of a Spin-Glass , 1975 .

[10]  L. Gross LOGARITHMIC SOBOLEV INEQUALITIES. , 1975 .

[11]  Daniel W. Stroock,et al.  In one and two dimensions, every stationary measure for a stochastic Ising Model is a Gibbs state , 1977 .

[12]  B. Derrida Random-Energy Model: Limit of a Family of Disordered Models , 1980 .

[13]  P. Diaconis,et al.  Generating a random permutation with random transpositions , 1981 .

[14]  Senya Shlosman,et al.  First-order phase transitions in large entropy lattice models , 1982 .

[15]  D. Freedman The General Case , 2022, Frameworks, Tensegrities, and Symmetry.

[16]  D. Aldous Random walks on finite groups and rapidly mixing markov chains , 1983 .

[17]  R. Dobrushin,et al.  Completely Analytical Gibbs Fields , 1985 .

[18]  R. Dobrushin,et al.  Constructive Criterion for the Uniqueness of Gibbs Field , 1985 .

[19]  T. Liggett Interacting Particle Systems , 1985 .

[20]  Noga Alon,et al.  lambda1, Isoperimetric inequalities for graphs, and superconcentrators , 1985, J. Comb. Theory, Ser. B.

[21]  N. Alon Eigenvalues and expanders , 1986, Comb..

[22]  R. Holley,et al.  Rapid Convergence to Equilibrium of Stochastic Ising Models in the Dobrushin Shlosman Regime , 1987 .

[23]  P. Diaconis,et al.  Time to reach stationarity in the Bernoulli-Laplace diffusion model , 1987 .

[24]  Wang,et al.  Nonuniversal critical dynamics in Monte Carlo simulations. , 1987, Physical review letters.

[25]  D. Stroock,et al.  Logarithmic Sobolev inequalities and stochastic Ising models , 1987 .

[26]  R. Dobrushin,et al.  Completely analytical interactions: Constructive description , 1987 .

[27]  Fisher,et al.  Dynamics of droplet fluctuations in pure and random Ising systems. , 1987, Physical review. B, Condensed matter.

[28]  A. Sokal,et al.  Bounds on the ² spectrum for Markov chains and Markov processes: a generalization of Cheeger’s inequality , 1988 .

[29]  E. Olivieri On a cluster expansion for lattice spin systems: A finite-size condition for the convergence , 1988 .

[30]  A. Sokal,et al.  Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. , 1988, Physical review. D, Particles and fields.

[31]  Hans-Otto Georgii,et al.  Gibbs Measures and Phase Transitions , 1988 .

[32]  Bound on the mass gap for a stochastic contour model at low temperature , 1989 .

[33]  Mark Jerrum,et al.  Approximating the Permanent , 1989, SIAM J. Comput..

[34]  Mark Jerrum,et al.  Approximate Counting, Uniform Generation and Rapidly Mixing Markov Chains , 1987, International Workshop on Graph-Theoretic Concepts in Computer Science.

[35]  S. Shlosman The droplet in the tube: A case of phase transition in the canonical ensemble , 1989 .

[36]  Daniel W. Stroock,et al.  Uniform andL2 convergence in one dimensional stochastic Ising models , 1989 .

[37]  Pierre Picco,et al.  Cluster expansion ford-dimensional lattice systems and finite-volume factorization properties , 1990 .

[38]  B. Zegarliński,et al.  On log-Sobolev inequalities for infinite lattice systems , 1990 .

[39]  Kenneth S. Alexander,et al.  Spatial Stochastic Processes , 1991 .

[40]  Fabio Martinelli,et al.  On the Swendsen-Wang dynamics. I. Exponential convergence to equilibrium , 1991 .

[41]  R. Holley,et al.  On the Asymptotics of the Spin-Spin Autocorrelation Function In Stochastic Ising Models Near the Critical Temperature , 1991 .

[42]  Harry Kesten,et al.  Random walks, Brownian motion and interacting particle systems : a festschrift in honor of Frank Spitzer , 1991 .

[43]  P. Diaconis,et al.  Geometric Bounds for Eigenvalues of Markov Chains , 1991 .

[44]  R. Holley The One Dimensional Stochastic X-Y Model , 1991 .

[45]  Fabio Martinelli,et al.  On the Swendsen-Wang dynamics. II. Critical droplets and homogeneous nucleation at low temperature for the two-dimensional Ising model , 1991 .

[46]  F. Martinelli Dynamical analysis of low-temperature monte carlo cluster algorithms , 1992 .

[47]  Alistair Sinclair,et al.  Improved Bounds for Mixing Rates of Markov Chains and Multicommodity Flow , 1992, Combinatorics, Probability and Computing.

[48]  Daniel W. Stroock,et al.  The logarithmic Sobolev inequality for continuous spin systems on a lattice , 1992 .

[49]  D. Stroock,et al.  The logarithmic sobolev inequality for discrete spin systems on a lattice , 1992 .

[50]  Boguslaw Zegarlinski,et al.  The equivalence of the logarithmic Sobolev inequality and the Dobrushin-Shlosman mixing condition , 1992 .

[51]  P. Diaconis,et al.  COMPARISON THEOREMS FOR REVERSIBLE MARKOV CHAINS , 1993 .

[52]  Mark Jerrum,et al.  Polynomial-Time Approximation Algorithms for the Ising Model , 1990, SIAM J. Comput..

[53]  Barry Simon,et al.  The statistical mechanics of lattice gases , 1993 .

[54]  Horng-Tzer Yau,et al.  Spectral gap and logarithmic Sobolev inequality for Kawasaki and Glauber dynamics , 1993 .

[55]  A. Sokal,et al.  Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory , 1991, hep-lat/9210032.

[56]  D. Stroock Logarithmic Sobolev inequalities for gibbs states , 1993 .

[57]  Some remarks on pathologies of renormalization-group transformations for the Ising model , 1993 .

[58]  H. Spohn Interface motion in models with stochastic dynamics , 1993 .

[59]  M. Artin,et al.  Société Mathématique de France , 1994 .

[60]  C. Newman Disordered Ising Systems and Random Cluster Representations , 1994 .

[61]  F. Martinelli,et al.  Approach to equilibrium of Glauber dynamics in the one phase region , 1994 .

[62]  F. C. Alcaraz EXACT STEADY STATES OF ASYMMETRIC DIFFUSION AND TWO-SPECIES ANNIHILATION WITH BACK REACTION FROM THE GROUND STATE OF QUANTUM SPIN MODELS , 1994 .

[63]  F. Martinelli,et al.  Approach to equilibrium of Glauber dynamics in the one phase region , 1994 .

[64]  Van den Berg,et al.  Disagreement percolation in the study of Markov fields , 1994 .

[65]  R. Holley Rapid Convergence to equilibrium in Ferromagnetic Stochastic Ising Models , 1994 .

[66]  F. Martinelli,et al.  For 2-D lattice spin systems weak mixing implies strong mixing , 1994 .

[67]  R. Schonmann Slow droplet-driven relaxation of stochastic Ising models in the vicinity of the phase coexistence region , 1994 .

[68]  R. H. Schonmann,et al.  Lifshitz' law for the volume of a two-dimensional droplet at zero temperature , 1995 .

[69]  On the ergodic properties of Glauber dynamics , 1995 .

[70]  M. Baake,et al.  Perspectives on Solvable Models , 1995 .

[71]  TOHRU KOMA,et al.  The Spectral Gap of the Ferromagnetic XXZ-Chain , 1995 .

[72]  Instability of renormalization-group pathologies under decimation , 1995 .

[73]  F. Martinelli,et al.  On the layering transition of an SOS surface interacting with a wall. I. Equilibrium results , 1996 .

[74]  P. Diaconis,et al.  LOGARITHMIC SOBOLEV INEQUALITIES FOR FINITE MARKOV CHAINS , 1996 .

[75]  H. Yau Logarithmic Sobolev inequality for lattice gases with mixing conditions , 1996 .

[76]  F. Martinelli,et al.  Some new results on the two-dimensional kinetic Ising model in the phase coexistence region , 1996 .

[77]  Decay to equilibrium in random spin systems on a lattice. II , 1996 .

[78]  B. Zegarliński,et al.  The strong decay to equilibrium for the stochastic dynamics of unbounded spin systems on a lattice , 1996 .

[79]  On the layering transition of an SOS surface interacting with a wall. II. The Glauber dynamics , 1996 .

[80]  F. Martinelli,et al.  On the two-dimensional stochastic Ising model in the phase coexistence region near the critical point , 1996 .

[81]  S. Varadhan,et al.  Spectral gap for zero-range dynamics , 1996 .

[82]  Filippo Cesi,et al.  Relaxation to Equilibrium for Two Dimensional Disordered Ising Systems in the Griffiths Phase , 1997 .

[83]  H. Yau Logarithmic Sobolev inequality for generalized simple exclusion processes , 1997 .

[84]  A. Sokal,et al.  Absence of phase transition for antiferromagnetic Potts models via the Dobrushin uniqueness theorem , 1996, cond-mat/9603068.

[85]  Martin E. Dyer,et al.  Path coupling: A technique for proving rapid mixing in Markov chains , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[86]  P. Mathieu Hitting times and spectral gap inequalities , 1997 .

[87]  Geoffrey Grimmett,et al.  Percolation and disordered systems , 1997 .

[88]  Exponential Relaxation of Glauber Dynamics with Some Special Boundary Conditions , 1997 .

[89]  Peter Winkler,et al.  Mixing times for uniformly ergodic Markov chains , 1997 .

[90]  Gustavo Posta Spectral gap for an unrestricted Kawasaki type dynamics , 1997 .

[91]  L. Saloff-Coste,et al.  Lectures on finite Markov chains , 1997 .

[92]  Anton Bovier,et al.  Mathematical Aspects of Spin Glasses and Neural Networks , 1997 .

[93]  Filippo Cesi,et al.  Relaxation of Disordered Magnets in the Griffiths' Regime , 1997 .

[94]  S. Varadhan,et al.  Diffusive limit of lattice gas with mixing conditions , 1997 .

[95]  A. Sokal Monte Carlo Methods in Statistical Mechanics: Foundations and New Algorithms , 1997 .

[96]  Mark Jerrum,et al.  The Swendsen-Wang process does not always mix rapidly , 1997, STOC '97.

[97]  Tzong-Yow Lee,et al.  Logarithmic Sobolev inequality for some models of random walks , 1998 .

[98]  The Three-State Square-Lattice Potts Antiferromagnet at Zero Temperature , 1998, cond-mat/9801079.

[99]  Y. Kohayakawa,et al.  The spectral gap of the REM under Metropolis dynamics , 1998 .

[100]  E. J. J. Rensburg,et al.  Collapsing and adsorbing polygons , 1998 .

[101]  M. Habib Probabilistic methods for algorithmic discrete mathematics , 1998 .

[102]  C. Landim,et al.  Scaling Limits of Interacting Particle Systems , 1998 .

[103]  K. Alexander,et al.  On weak mixing in lattice models , 1998 .

[104]  Mark Jerrum,et al.  Mathematical Foundations of the Markov Chain Monte Carlo Method , 1998 .

[105]  A. Guttmann On combinatorics and statistical mechanics , 1999 .

[106]  C. Landim,et al.  Relaxation to Equilibrium of Conservative Dynamics. I: Zero-Range Processes , 1999 .

[107]  D. Ruelle Statistical Mechanics: Rigorous Results , 1999 .

[108]  A. Frieze,et al.  Mixing properties of the Swendsen-Wang process on classes of graphs , 1999 .

[109]  Mark Huber,et al.  Efficient exact sampling from the Ising model using Swendsen-Wang , 1999, SODA '99.

[110]  Martin E. Dyer,et al.  On counting independent sets in sparse graphs , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[111]  N. Yoshida The log-Sobolev inequality for weakly coupled lattice fields , 1999 .

[112]  B. Helffer,et al.  THE LOG-SOBOLEV INEQUALITY FOR UNBOUNDED SPIN SYSTEMS , 1999 .

[113]  P. Diaconis,et al.  Bounds for Kac's Master Equation , 1999 .

[114]  Buks van Rensburg,et al.  Adsorbing staircase walks and staircase polygons , 1999 .

[115]  F. Martinelli,et al.  The Spectral Gap for the Kawasaki Dynamics at Low Temperature , 1999 .

[116]  L. Bertini,et al.  Renormalization-Group Transformations Under Strong Mixing Conditions: Gibbsianness and Convergence of Renormalized Interactions , 1999, cond-mat/9905434.

[117]  Alan M. Frieze,et al.  Torpid mixing of some Monte Carlo Markov chain algorithms in statistical physics , 1999, 40th Annual Symposium on Foundations of Computer Science (Cat. No.99CB37039).

[118]  László Lovász,et al.  Faster mixing via average conductance , 1999, STOC '99.

[119]  M. Luby,et al.  Fast convergence of the Glauber dynamics for sampling independent sets , 1999 .

[120]  F. Martinelli Lectures on Glauber dynamics for discrete spin models , 1999 .

[121]  Eric Vigoda Improved bounds for sampling colorings , 2000 .

[122]  K. Alexander The Spectral Gap of the 2-D Stochastic Ising Model with Nearly Single-Spin Boundary Conditions , 2000, math/0008216.

[123]  Martin E. Dyer,et al.  On Markov Chains for Independent Sets , 2000, J. Algorithms.

[124]  P. Tetali,et al.  Analyzing Glauber dynamics by comparison of Markov chains , 2000 .

[125]  P. Mathieu Convergence to Equilibrium for Spin Glasses , 2000 .

[126]  Elchanan Mossel,et al.  On the mixing time of a simple random walk on the super critical percolation cluster , 2000 .

[127]  N. Yoshida Application of log-Sobolov Inequality to the Stochastic Dynamics of Unbounded Spin Systems on the Lattice , 2000 .

[128]  Finite-Volume Excitations of the¶111 Interface in the Quantum XXZ Model , 1999, math-ph/9908018.

[129]  P. Contucci,et al.  Path Integral Representation for Interface States of the Anisotropic Heisenberg Model , 1999, math-ph/9908004.

[130]  F. Martinelli,et al.  On the spectral gap of Kawasaki dynamics under a mixing condition revisited , 2000 .

[131]  Dana Randall,et al.  Sampling adsorbing staircase walks using a new Markov chain decomposition method , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[132]  Djalil CHAFAÏ,et al.  Sur les in'egalit'es de Sobolev logarithmiques , 2000 .

[133]  Yvan Alain Velenik,et al.  Rigorous probabilistic analysis of equilibrium crystal shapes , 2000 .

[134]  Alan D. Sokal A Personal List of Unsolved Problems Concerning Lattice Gases and Antiferromagnetic Potts Models , 2000 .

[135]  B. Nachtergaele Interfaces and droplets in quantum lattice models , 2000, math-ph/0009027.

[136]  E. Carlen,et al.  Determination of the Spectral Gap for Kac's Master Equation and Related Stochastic Evolutions , 2001, math-ph/0109003.

[137]  Diffusive scaling of the spectral gap for the dilute Ising lattice-gas dynamics below the percolation threshold , 2001 .

[138]  Nobuo Yoshida,et al.  The equivalence of the log-Sobolev inequality and a mixing condition for unbounded spin systems on the lattice☆ , 2001 .

[139]  B. Nachtergaele,et al.  The spectral gap for the ferromagnetic spin-J XXZ chain , 2001, math-ph/0110017.

[140]  The Spectral Gap of the 2-D Stochastic Ising Model with Mixed Boundary Conditions , 2000, math/0008201.

[141]  Michel Ledoux,et al.  Logarithmic Sobolev Inequalities for Unbounded Spin Systems Revisited , 2001 .

[142]  E. Janvresse Spectral gap for Kac's model of Boltzmann equation , 2001 .

[143]  F. Cesi Quasi-factorization of the entropy and logarithmic Sobolev inequalities for Gibbs random fields , 2001 .

[144]  Dana Randall,et al.  Markov Chain Algorithms for Planar Lattice Structures , 2001, SIAM J. Comput..

[145]  Yuval Peres,et al.  Glauber dynamics on trees and hyperbolic graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[146]  Elchanan Mossel,et al.  Glauber dynamics on trees and hyperbolic graphs , 2001, Proceedings 2001 IEEE International Conference on Cluster Computing.

[147]  Eric Vigoda,et al.  A Note on the Glauber Dynamics for Sampling Independent Sets , 2001, Electron. J. Comb..

[148]  Some properties for the low-lying spectrum of the ferromagnetic, quantum XXZ spin system , 2001, math-ph/0106024.

[149]  Michel Émery,et al.  Seminaire de Probabilites XXXV , 2001 .

[150]  Pietro Caputo,et al.  Asymmetric Diffusion and the Energy Gap Above¶the 111 Ground State of the Quantum XXZ Model , 2002 .

[151]  Nobuaki Sugimine A lower bound on the spectral gap of the 3-dimensional stochastic Ising models , 2002 .

[152]  D. Randall,et al.  Markov chain decomposition for convergence rate analysis , 2002 .

[153]  RELAXATION TIME OF ANISOTROPIC SIMPLE EXCLUSION PROCESSES AND QUANTUM HEISENBERG MODELS , 2002, math/0202025.

[154]  Filippo Cesi,et al.  The spectral gap for a Glauber-type dynamics in a continuous gas☆ , 2002 .

[155]  Uniform Poincaré inequalities for unbounded conservative spin systems: the non-interacting case , 2002, math/0202023.

[156]  Elchanan Mossel,et al.  Mixing times of the biased card shuffling and the asymmetric exclusion process , 2002, math/0207199.

[157]  C. Landim,et al.  Spectral gap and logarithmic Sobolev inequality for unbounded conservative spin systems , 2002 .

[158]  F. Martinelli,et al.  Some New Results on the Kinetic Ising Model in a Pure Phase , 2002 .

[159]  Martin E. Dyer,et al.  Mixing in time and space for lattice spin systems: A combinatorial view , 2002, RANDOM.

[160]  F. Martinelli,et al.  The logarithmic Sobolev constant of Kawasaki dynamics under a mixing condition revisited , 2002 .

[161]  R. Schonmann,et al.  Stretched Exponential Fixation in Stochastic Ising Models at Zero Temperature , 2002 .

[162]  Exponential decay of entropy in the random transposition and Bernoulli-Laplace models , 2003 .

[163]  Yuval Peres,et al.  Evolving sets and mixing , 2003, STOC '03.

[164]  Alice Guionnet,et al.  Lectures on Logarithmic Sobolev Inequalities , 2003 .

[165]  K. Alexander Mixing properties and exponential decay for lattice systems in finite volumes , 2004 .

[166]  Jeff Kahn,et al.  On Phase Transition in the Hard-Core Model on ${\mathbb Z}^d$ , 2004, Combinatorics, Probability and Computing.

[167]  D. Wilson Mixing times of lozenge tiling and card shuffling Markov chains , 2001, math/0102193.