Low-order divergence-free approximations for the Stokes problem on Worsey-Farin and Powell-Sabin splits

We derive low-order, inf-sup stable and divergence-free finite element approximations for the Stokes problem using Worsey-Farin splits in three dimensions and Powell-Sabin splits in two dimensions. The velocity space simply consists of continuous, piecewise linear polynomials, where as the pressure space is a subspace of piecewise constants with weak continuity properties at singular edges (3D) and singular vertices (2D). We discuss implementation aspects that arise when coding the pressure space, and in particular, show that the pressure constraints can be enforced at an algebraic level.

[1]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[2]  Shangyou Zhang A family of 3D continuously differentiable finite elements on tetrahedral grids , 2009 .

[3]  A. Lischke,et al.  Exact sequences on Powell–Sabin splits , 2019, Calcolo.

[4]  L. Mitchell,et al.  PCPATCH , 2021, ACM Transactions on Mathematical Software.

[5]  Michael Neilan,et al.  Inf-Sup Stable Finite Elements on Barycentric Refinements Producing Divergence-Free Approximations in Arbitrary Dimensions , 2017, SIAM J. Numer. Anal..

[6]  Zhang,et al.  ON THE P1 POWELL-SABIN DIVERGENCE-FREE FINITE ELEMENT FOR THE STOKES EQUATIONS , 2008 .

[7]  John N. Shadid,et al.  A taxonomy and comparison of parallel block multi-level preconditioners for the incompressible Navier-Stokes equations , 2008, J. Comput. Phys..

[8]  Shangyou Zhang Quadratic divergence-free finite elements on Powell–Sabin tetrahedral grids , 2011 .

[9]  D. Malkus Eigenproblems associated with the discrete LBB condition for incompressible finite elements , 1981 .

[10]  Hendrik Speleers,et al.  Standard and Non-standard CAGD Tools for Isogeometric Analysis: A Tutorial , 2016 .

[11]  Malcolm A. Sabin,et al.  Piecewise Quadratic Approximations on Triangles , 1977, TOMS.

[12]  L. Ridgway Scott,et al.  The Scott-Vogelius finite elements revisited , 2017, Math. Comput..

[13]  L. R. Scott,et al.  Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .

[14]  J. Guzmán,et al.  Conforming and divergence-free Stokes elements in three dimensions , 2014 .

[15]  Lawrence Mitchell,et al.  A Reynolds-robust preconditioner for the Scott-Vogelius discretization of the stationary incompressible Navier-Stokes equations , 2020, The SMAI journal of computational mathematics.

[16]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[17]  Jinshui Qin,et al.  Stability and approximability of the 1 0 element for Stokes equations , 2007 .

[18]  A. Wathen,et al.  Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .

[19]  G. Farin,et al.  Ann-dimensional Clough-Tocher interpolant , 1987 .

[20]  Shangyou Zhang,et al.  A new family of stable mixed finite elements for the 3D Stokes equations , 2004, Math. Comput..

[21]  Peter Alfeld,et al.  A trivariate clough-tocher scheme for tetrahedral data , 1984, Comput. Aided Geom. Des..