Molecular Beam Epitaxy Deposition of In Situ O‐Doped CdS Films for Highly Efficient Sb2(S,Se)3 Solar Cells

[1]  Junbo Gong,et al.  Solvent‐Assisted Hydrothermal Deposition Approach for Highly‐Efficient Sb2(S,Se)3 Thin‐Film Solar Cells , 2023, Advanced Energy Materials.

[2]  Wooseok Yang,et al.  Molecular Ink-Derived Chalcogenide Thin Films: Solution-Phase Mechanisms and Solar Energy Conversion Applications , 2023, Materials Today Energy.

[3]  Zhaosheng Zhang Sulfur-Vacancy Passivation via Selenium Doping in Sb2S3 Solar Cells: Density Functional Theory Analysis , 2022, The Journal of Physical Chemistry C.

[4]  Xiaoyang Liang,et al.  Reactively sputtered CdS:O buffer layers for substrate Sb2Se3 solar cells , 2022, Journal of Alloys and Compounds.

[5]  Junbo Gong,et al.  A Novel Multi‐Sulfur Source Collaborative Chemical Bath Deposition Technology Enables 8%‐Efficiency Sb2S3 Planar Solar Cells , 2022, Advanced materials.

[6]  Junbo Gong,et al.  Hydrazine Hydrate‐Induced Surface Modification of CdS Electron Transport Layer Enables 10.30%‐Efficient Sb2(S,Se)3 Planar Solar Cells , 2022, Advanced science.

[7]  R. Schropp,et al.  Sb2Se3 Thin‐Film Solar Cells Exceeding 10% Power Conversion Efficiency Enabled by Injection Vapor Deposition Technology , 2022, Advanced materials.

[8]  Jianning Ding,et al.  Thermal evaporation–deposited hexagonal CdS buffer layer with improved quality, enlarged band gap, and reduced band gap offset to boost performance of Sb2(S,Se)3 solar cells , 2022, Journal of Alloys and Compounds.

[9]  Razieh Keshtmand,et al.  Enhanced Performance of Planar Perovskite Solar Cells Using Thioacetamide-Treated SnS2 Electron Transporting Layer Based on Molecular Ink , 2022, Energy & Fuels.

[10]  Bing Li,et al.  Fabrication of closed-space sublimation Sb2(S1-xSex)3 thin-film based on a single mixed powder source for photovoltaic application , 2021, Optical Materials.

[11]  Junbo Gong,et al.  Regulating Energy Band Alignment via Alkaline Metal Fluoride Assisted Solution Post‐Treatment Enabling Sb2(S,Se)3 Solar Cells with 10.7% Efficiency , 2021, Advanced Energy Materials.

[12]  L. Wong,et al.  Controllable Solution‐Phase Epitaxial Growth of Q1D Sb2(S,Se)3/CdS Heterojunction Solar Cell with 9.2% Efficiency , 2021, Advanced materials.

[13]  Junsheng Yu,et al.  Thin‐Film Solar Cells of an Indium‐Modified Silver Antimony Sulfide Selenide Absorber Prepared by Spray Pyrolysis , 2021, physica status solidi (RRL) – Rapid Research Letters.

[14]  Cui Ying Toe,et al.  Accelerating Electron-Transfer and Tuning Product Selectivity Through Surficial Vacancy Engineering on CZTS/CdS for Photoelectrochemical CO2 Reduction. , 2021, Small.

[15]  W. Wang,et al.  Effect of evaporated CdS layer on formation and performance enhancement of flexible Cu2ZnSn(S,Se)4 solar cells , 2021 .

[16]  H. Akiyama,et al.  Fabricating over 7%-efficient Sb2(S,Se)3 thin-film solar cells by vapor transport deposition using Sb2Se3 and Sb2S3 mixed powders as the evaporation source , 2021 .

[17]  T. Chen,et al.  Sequential Coevaporation and Deposition of Antimony Selenosulfide Thin Film for Efficient Solar Cells , 2021, Advanced materials.

[18]  Tao Chen,et al.  Efficient Sb 2 (S,Se) 3 Solar Modules Enabled by Hydrothermal Deposition , 2021 .

[19]  Tao Chen,et al.  Manipulating the Electrical Properties of Sb2(S,Se)3 Film for High‐Efficiency Solar Cell , 2020, Advanced Energy Materials.

[20]  M. Green,et al.  Hydrothermal deposition of antimony selenosulfide thin films enables solar cells with 10% efficiency , 2020, Nature Energy.

[21]  Tao Chen,et al.  Pulsed laser deposition of antimony selenosulfide thin film for efficient solar cells , 2020 .

[22]  Liping Guo,et al.  Interface Engineering via Sputtered Oxygenated CdS:O Window Layer for Highly Efficient Sb 2 Se 3 Thin‐Film Solar Cells with Efficiency Above 7% , 2019, Solar RRL.

[23]  Chung‐Jen Tseng,et al.  Planar Heterojunction Solar Cell Employing a Single-Source Precursor Solution-Processed Sb2S3 Thin Film as the Light Absorber , 2019, ACS omega.

[24]  Songcan Wang,et al.  Crystal Facet Engineering of Photoelectrodes for Photoelectrochemical Water Splitting. , 2019, Chemical reviews.

[25]  P. Marwoto,et al.  Growth of a-axis-oriented Al-doped ZnO thin film on glass substrate using unbalanced DC magnetron sputtering , 2019, Journal of Physics: Conference Series.

[26]  T. Chen,et al.  Interfacial Engineering by Indium-Doped CdS for High Efficiency Solution Processed Sb2(S1- xSe x)3 Solar Cells. , 2019, ACS applied materials & interfaces.

[27]  A. Rockett,et al.  The role of oxygen doping on elemental intermixing at the PVD‐CdS/Cu (InGa)Se2 heterojunction , 2018, Progress in Photovoltaics: Research and Applications.

[28]  Shangfeng Yang,et al.  n-Type Doping of Sb2S3 Light-Harvesting Films Enabling High-Efficiency Planar Heterojunction Solar Cells. , 2018, ACS applied materials & interfaces.

[29]  Jiang Tang,et al.  Efficient Double Buffer Layer Sb2 (Sex S1-x )3 Thin Film Solar Cell Via Single Source Evaporation , 2018, Solar RRL.

[30]  Chunfeng Lan,et al.  Microstructural and Optical Properties of Sb2S3 Film Thermally Evaporated from Antimony Pentasulfide and Efficient Planar Solar Cells , 2018 .

[31]  Tao Chen,et al.  Development of antimony sulfide-selenide Sb 2 (S, Se) 3 -based solar cells , 2017 .

[32]  I. Repins,et al.  Zn–Se–Cd–S Interlayer Formation at the CdS/Cu2ZnSnSe4 Thin-Film Solar Cell Interface , 2017 .

[33]  Jiang Tang,et al.  In situ sulfurization to generate Sb2(Se1 − xSx)3 alloyed films and their application for photovoltaics , 2017 .

[34]  D. Sokaras,et al.  Electronic structure study of the CdS buffer layer in CIGS solar cells by X-ray absorption spectroscopy: Experiment and theory , 2016 .

[35]  S. Major,et al.  Effect of heat treatment on the photoluminescence of CdS nanocrystallites in cadmium-rich organic Langmuir Blodgett matrix , 2013 .

[36]  F. Gemain,et al.  Photoluminescence studies of CdS layers for solar cells , 2012 .

[37]  E. Bacaksız,et al.  Current transport mechanism in CdS thin films prepared by vacuum evaporation method at substrate temperatures below room temperature , 2012 .

[38]  Hao Sun,et al.  Effect of CdCl2 annealing treatment on thin CdS films prepared by chemical bath deposition , 2010 .

[39]  Zhiyong Fan,et al.  Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. , 2009, Nature materials.

[40]  K. Durose,et al.  Photoluminescence study of polycrystalline photovoltaic CdS thin film layers grown by close-spaced sublimation and chemical bath deposition , 2009 .

[41]  U. Roy,et al.  Study of annealing-induced changes in CdS thin films using X-ray diffraction and Raman spectroscopy , 2007 .

[42]  Jie Zhou,et al.  Nanostructured CdS:O film: preparation, properties, and application , 2004 .