Reverse Monte Carlo modeling of thermal disorder in crystalline materials from EXAFS spectra

Abstract In this work we present the Reverse Monte Carlo (RMC) modeling scheme, designed to probe the local structural and thermal disorder in crystalline materials by fitting the wavelet transform (WT) of the EXAFS signal. Application of the method to the analysis of the Ge K-edge and Re L3-edge EXAFS signals in crystalline germanium and rhenium trioxide, respectively, is presented with special attention to the problem of thermal disorder and related phenomena.

[1]  L McGreevyR,et al.  Reverse Monte Carlo modelling of networl glasses: useful or useless? , 2001 .

[2]  L. Bugaev,et al.  Single and Multiple Electron Scattering Description in X-Ray Absorption Spectrum Theory and the Problem of Solid Structure Investigation , 1988 .

[3]  B. M. Fulk MATH , 1992 .

[4]  A. Ankudinov,et al.  REAL-SPACE MULTIPLE-SCATTERING CALCULATION AND INTERPRETATION OF X-RAY-ABSORPTION NEAR-EDGE STRUCTURE , 1998 .

[5]  J. Timoshenko,et al.  Molecular dynamics simulations of EXAFS in germanium , 2011 .

[6]  A. Kuzmin,et al.  EDA: EXAFS data analysis software package , 1995 .

[7]  A. Trapananti,et al.  Reverse Monte Carlo refinement of molecular and condensed systems by x-ray absorption spectroscopy , 2005 .

[8]  I. Levin,et al.  Reverse Monte Carlo refinements of local displacive order in perovskites: AgNbO3 case study , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[9]  J. Kalnajs,et al.  Densities and Imperfections of Single Crystals , 1955 .

[10]  Irene Yarovsky,et al.  Hybrid approach for generating realistic amorphous carbon structure using metropolis and reverse Monte Carlo , 2002 .

[11]  R. Mcgreevy,et al.  Reverse Monte Carlo modelling , 2001 .

[12]  J. Purans,et al.  A high-temperature x-ray absorption spectroscopy study of , 1996 .

[13]  Marc R. Knecht,et al.  Periodicity and Atomic Ordering in Nanosized Particles of Crystals , 2008 .

[14]  J. Purans,et al.  A new fast spherical approximation for calculation of multiple-scattering contributions in x-ray absorption fine structure and its application to ReO3, NaWO3, and MoO3 , 1993 .

[15]  J. Purans,et al.  The influence of the focusing effect on the X-ray absorption fine structure above all the tungsten L edges in non-stoichiometric tungsten oxides , 1993 .

[16]  A. Kuzmin,et al.  Focusing and superfocusing effects in X-ray absorption fine structure at the iron K edge in FeF3 , 1994 .

[17]  A. Kuzmin,et al.  X-ray absorption spectroscopy study of ReO3 lattice dynamics , 1995 .

[18]  Femtometer accuracy EXAFS measurements: Isotopic effect in the first, second and third coordination shells of germanium , 2009 .

[19]  M. Winterer Reverse Monte Carlo analysis of extended x-ray absorption fine structure spectra of monoclinic and amorphous zirconia , 2000 .

[20]  Martin T. Dove,et al.  Application of the reverse Monte Carlo method to crystalline materials , 2001 .

[21]  R. Ingalls,et al.  X-ray-absorption fine structure determination of pressure-induced bond-angle changes in ReO 3 , 2000 .

[22]  Kjartan Thor Wikfeldt,et al.  SpecSwap-RMC: a novel reverse Monte Carlo approach using a discrete set of local configurations and pre-computed properties. , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[23]  Janis Timoshenko,et al.  Wavelet data analysis of EXAFS spectra , 2009, Comput. Phys. Commun..

[24]  R. Mittal,et al.  Negative thermal expansion ofReO3: Neutron diffraction experiments and dynamical lattice calculations , 2008 .

[25]  A. Sanson,et al.  Isotopic effect in extended x-ray-absorption fine structure of germanium. , 2008, Physical review letters.

[26]  Bruce E. Hajek,et al.  Cooling Schedules for Optimal Annealing , 1988, Math. Oper. Res..

[27]  Natoli,et al.  X-ray-absorption spectroscopy and n-body distribution functions in condensed matter. I. Theory. , 1995, Physical review. B, Condensed matter.

[28]  R. Mcgreevy,et al.  Reverse Monte Carlo simulation for the analysis of EXAFS data , 1990 .

[29]  S. Doniach,et al.  Theory of extended x-ray absorption edge fine structure (EXAFS) in crystalline solids , 1975 .

[30]  N. Bedford Analysis of 3D structures of platinum nanoparticles by high energy X-ray diffraction and reverse Monte Carlo simulations , 2010 .

[31]  Interpretation of EXAFS in ReO3 using molecular dynamics simulations , 2009 .

[32]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[33]  R. L. McGreevy,et al.  Reverse Monte Carlo Simulation: A New Technique for the Determination of Disordered Structures , 1988 .

[34]  A. Trapananti,et al.  Is there icosahedral ordering in liquid and undercooled metals? , 2003, Physical review letters.

[35]  P. Argoul,et al.  Continuous Cauchy wavelet transform analyses of EXAFS spectra: A qualitative approach , 2003 .

[36]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[37]  A. P. Sorini,et al.  Ab initio theory and calculations of X-ray spectra , 2009 .

[38]  J. Woicik,et al.  A Combined Fit of Total Scattering and Extended X-ray Absorption Fine Structure Data for Local-Structure Determination in Crystalline Materials , 2009 .

[39]  R. Mcgreevy,et al.  Structural and magnetic disorder in La1-xSrxMnO3 , 2000 .

[40]  S. Trabesinger,et al.  Reverse Monte Carlo studies of nanoporous carbon from TiC , 2005, Journal of Physics: Condensed Matter.

[41]  John B. Pendry,et al.  Theory of the extended x-ray absorption fine structure , 1975 .

[42]  A. Kuzmin,et al.  Evaluation of multiple-scattering contribution in extended X-ray absorption fine structure for MO4 and MO6 clusters , 1994 .

[43]  Martin T. Dove,et al.  Reverse Monte Carlo modelling of crystalline disorder , 2005 .

[44]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[45]  E. Ma,et al.  EXAFS measurements and reverse Monte Carlo modeling of atomic structure in amorphous Ni80P20 alloys , 2008 .

[46]  Qun Hui,et al.  RMCProfile: reverse Monte Carlo for polycrystalline materials , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[47]  李幼升,et al.  Ph , 1989 .

[48]  R. Mcgreevy,et al.  RMC: modelling neutron diffraction, X-ray diffraction and EXAFS data simultaneously for amorphous materials , 1995 .

[49]  I. Levin,et al.  Simultaneous reverse Monte Carlo refinements of local structures in perovskite solid solutions using EXAFS and the total scattering pair-distribution function , 2008 .

[50]  László Pusztai,et al.  Reverse Monte Carlo modelling of the structure of disordered materials with RMC++ : a new implementation of the algorithm in C++ , 2005 .

[51]  良二 上田 J. Appl. Cryst.の発刊に際して , 1970 .

[52]  S. Papson “Model” , 1981 .

[53]  P. Chupas,et al.  3-D Structure of Nanosized Catalysts by High-Energy X-ray Diffraction and Reverse Monte Carlo Simulations: Study of Ru , 2007 .

[54]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[55]  J. Rehr,et al.  Theoretical approaches to x-ray absorption fine structure , 2000 .

[56]  R. Mcgreevy,et al.  X-ray diffraction, neutron scattering and EXAFS spectroscopy of monoclinic zirconia: analysis by Rietveld refinement and reverse Monte Carlo simulations , 2002 .