Ibuprofen molecular aggregation by direct back-face transmission steady-state fluorescence

[1]  D. Rodrigues,et al.  Radioluminescent Ionic Liquids: Designer Materials for Detecting and Quantifying Ionizing Radiation , 2020 .

[2]  R. Alasino,et al.  Ibuprofen, a traditional drug that may impact the course of COVID-19 new effective formulation in nebulizable solution , 2020, Medical Hypotheses.

[3]  Caleb F. Anderson,et al.  The role of critical micellization concentration in efficacy and toxicity of supramolecular polymers , 2020, Proceedings of the National Academy of Sciences.

[4]  Abdullah M. Asiri,et al.  Investigation of aggregation behavior of ibuprofen sodium drug under the influence of gelatin protein and salt , 2019, Journal of Molecular Liquids.

[5]  Ofra Benny,et al.  A robust method for critical micelle concentration determination using coumarin-6 as a fluorescent probe , 2019, Analytical Methods.

[6]  M. Lagorio,et al.  Photophysics at Unusually High Dye Concentrations. , 2018, Accounts of chemical research.

[7]  Soumen Ghosh,et al.  Interaction between a Nonsteroidal Anti-inflammatory Drug (Ibuprofen) and an Anionic Surfactant (AOT) and Effects of Salt (NaI) and Hydrotrope (4-4-4). , 2018, The journal of physical chemistry. B.

[8]  E. Mylonas,et al.  Platonic Micelles: Monodisperse Micelles with Discrete Aggregation Numbers Corresponding to Regular Polyhedra , 2017, Scientific Reports.

[9]  H. Rodríguez,et al.  Steady-State Fluorescence of Highly Absorbing Samples in Transmission Geometry: A Simplified Quantitative Approach Considering Reabsorption Events. , 2017, Analytical chemistry.

[10]  R. Mondal,et al.  Investigating the micellization of the triton-X surfactants: A non-invasive fluorometric and calorimetric approach , 2016 .

[11]  G. Ottaviani,et al.  Importance of critical micellar concentration for the prediction of solubility enhancement in biorelevant media. , 2015, Molecular pharmaceutics.

[12]  R. Mahajan,et al.  Micellar transitions in catanionic ionic liquid–ibuprofen aqueous mixtures; effects of composition and dilution , 2014 .

[13]  J. Devoisselle,et al.  Surfactant behavior of ionic liquids involving a drug: from molecular interactions to self-assembly. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[14]  S. P. Moulik,et al.  Tensiometric determination of Gibbs surface excess and micelle point: a critical revisit. , 2013, Journal of colloid and interface science.

[15]  S. Mukherjee,et al.  Spectroscopic determination of Critical Micelle Concentration in aqueous and non-aqueous media using a non-invasive method. , 2011, Journal of colloid and interface science.

[16]  J. Devoisselle,et al.  Surfactant properties of ionic liquids containing short alkyl chain imidazolium cations and ibuprofenate anions. , 2011, Physical chemistry chemical physics : PCCP.

[17]  J. P. Marcolongo,et al.  Thermodynamics of Sodium Dodecyl Sulfate (SDS) Micellization: An Undergraduate Laboratory Experiment. , 2011 .

[18]  P. Carpena,et al.  On the determination of the critical micelle concentration by the pyrene 1:3 ratio method , 2003 .

[19]  D. Shah,et al.  On the measurement of critical micelle concentrations of pure and technical-grade nonionic surfactants , 2000 .

[20]  S. Nilsson,et al.  Amphiphilic association of ibuprofen and two nonionic cellulose derivatives in aqueous solution. , 1999, Journal of pharmaceutical sciences.

[21]  J. Pernak,et al.  3-Alkylthiomethyl-1-ethylimidazolium chlorides. Correlation between critical micelle concentrations and minimum inhibitory concentrations , 1996 .

[22]  Nicholas J. Turro,et al.  Luminescent probes for detergent solutions. A simple procedure for determination of the mean aggregation number of micelles , 1978 .

[23]  J. K. Thomas,et al.  Environmental effects on vibronic band intensities in pyrene monomer fluorescence and their application in studies of micellar systems , 1977 .