Extending Hirshfeld‐I to bulk and periodic materials
暂无分享,去创建一个
Patrick Bultinck | Danny E. P. Vanpoucke | Isabel Van Driessche | D. Vanpoucke | P. Bultinck | I. Driessche
[1] P. G. Byrom,et al. A novel definition of a molecule in a crystal , 1997 .
[2] P. Hohenberg,et al. Inhomogeneous Electron Gas , 1964 .
[3] Á. M. Pendás,et al. Electron number distribution functions with iterative Hirshfeld atoms , 2011 .
[4] R. S. Mulliken. Electronic Structures of Molecules XI. Electroaffinity, Molecular Orbitals and Dipole Moments , 1935 .
[5] D. L. Cooper,et al. Anatomy of bond formation. Bond length dependence of the extent of electron sharing in chemical bonds from the analysis of domain-averaged Fermi holes , 2007 .
[6] Gustavo E Scuseria,et al. Theoretical study of CeO2 and Ce2O3 using a screened hybrid density functional. , 2006, The Journal of chemical physics.
[7] Chérif F. Matta,et al. Atomic Charges Are Measurable Quantum Expectation Values: A Rebuttal of Criticisms of QTAIM Charges , 2004 .
[8] R. Wheatley,et al. Redefining the atom: atomic charge densities produced by an iterative stockholder approach. , 2008, Chemical communications.
[9] François M. Peeters,et al. Water on graphene: Hydrophobicity and dipole moment using density functional theory , 2009 .
[10] Patrick Bultinck,et al. Critical analysis and extension of the Hirshfeld atoms in molecules. , 2007, The Journal of chemical physics.
[11] M. Spackman,et al. Hirshfeld Surfaces: A New Tool for Visualising and Exploring Molecular Crystals , 1998 .
[12] Jefferson Z. Liu,et al. Graphene actuators: quantum-mechanical and electrostatic double-layer effects. , 2011, Journal of the American Chemical Society.
[13] Patrick Bultinck,et al. Electrostatic Potentials from Self-Consistent Hirshfeld Atomic Charges. , 2009, Journal of chemical theory and computation.
[14] Alexey I. Baranov,et al. Electron localization and delocalization indices for solids , 2011, J. Comput. Chem..
[15] E. Wigner,et al. On the Constitution of Metallic Sodium. II , 1933 .
[16] A. Becke. A multicenter numerical integration scheme for polyatomic molecules , 1988 .
[17] W. Kohn,et al. Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .
[18] P. Ayers. Atoms in molecules, an axiomatic approach. I. Maximum transferability , 2000 .
[19] Alexander J. Norquist,et al. Beyond Charge Density Matching: The Role of C–H···O Interactions in the Formation of Templated Vanadium Tellurites , 2011 .
[20] Paul W Ayers,et al. What is an atom in a molecule? , 2005, The journal of physical chemistry. A.
[21] Georges Voronoi. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Premier mémoire. Sur quelques propriétés des formes quadratiques positives parfaites. , 1908 .
[22] R. Wheatley,et al. Atomic charge densities generated using an iterative stockholder procedure. , 2009, The Journal of chemical physics.
[23] M. Spackman,et al. Novel tools for visualizing and exploring intermolecular interactions in molecular crystals. , 2004, Acta crystallographica. Section B, Structural science.
[24] Blöchl,et al. Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.
[25] R. C. Morrison,et al. Variational principles for describing chemical reactions: Condensed reactivity indices , 2002 .
[26] F. L. Hirshfeld. Bonded-atom fragments for describing molecular charge densities , 1977 .
[27] Chérif F Matta,et al. An experimentalist's reply to "What is an atom in a molecule?". , 2006, The journal of physical chemistry. A.
[28] D. Sholl,et al. Accurate Treatment of Electrostatics during Molecular Adsorption in Nanoporous Crystals without Assigning Point Charges to Framework Atoms , 2011 .
[29] Matthias Zeller,et al. [R-C{sub 7}H{sub 16}N{sub 2}][V{sub 2}Te{sub 2}O{sub 10}] and [S-C{sub 7}H{sub 16}N{sub 2}][V{sub 2}Te{sub 2}O{sub 10}]; new polar templated vanadium tellurite enantiomers , 2011 .
[30] John C. Slater,et al. Quantum Theory of Molecules and Solids Vol. 4: The Self‐Consistent Field for Molecules and Solids , 1974 .
[31] K. Tiels,et al. Uniqueness and basis set dependence of iterative Hirshfeld charges , 2007 .
[32] T. Verstraelen,et al. Computation of Charge Distribution and Electrostatic Potential in Silicates with the Use of Chemical Potential Equalization Models , 2012 .
[33] Ernest R. Davidson,et al. A test of the Hirshfeld definition of atomic charges and moments , 1992 .
[34] R. Bader,et al. Spatial localization of the electronic pair and number distributions in molecules , 1975 .
[35] Alexander J. Norquist,et al. [R-C7H16N2][V2Te2O10] and [S-C7H16N2][V2Te2O10]; new polar templated vanadium tellurite enantiomers , 2011 .
[36] Á. M. Pendás,et al. Generalized electron number distribution functions: real space versus orbital space descriptions , 2011 .
[37] R. S. Mulliken. Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .
[38] M. Dolg,et al. Valence basis sets for lanthanide 4f-in-core pseudopotentials adapted for crystal orbital ab initio calculations , 2005 .
[39] F. Peeters,et al. First-principles investigation of graphene fluoride and graphane , 2010, 1009.3847.
[40] K. Hermansson,et al. Tuning LDA+U for electron localization and structure at oxygen vacancies in ceria. , 2007, The Journal of chemical physics.
[41] Dylan Jayatilaka,et al. Hirshfeld surface analysis , 2009 .
[42] Richard F. W. Bader. A quantum theory of molecular structure and its applications , 1991 .
[43] S. H. Vosko,et al. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .
[44] Stefan Goedecker,et al. ABINIT: First-principles approach to material and nanosystem properties , 2009, Comput. Phys. Commun..
[45] Joshua Schrier. Fluorinated and nanoporous graphene materials as sorbents for gas separations. , 2011, ACS applied materials & interfaces.
[46] R. Parr,et al. Some remarks on the density functional theory of few-electron systems , 1983 .
[47] Yang,et al. Degenerate ground states and a fractional number of electrons in density and reduced density matrix functional theory , 2000, Physical review letters.
[48] J. Perdew,et al. Density-Functional Theory for Fractional Particle Number: Derivative Discontinuities of the Energy , 1982 .
[49] Fujio Izumi,et al. VESTA: a three-dimensional visualization system for electronic and structural analysis , 2008 .
[50] Paul W. Ayers,et al. A self‐consistent Hirshfeld method for the atom in the molecule based on minimization of information loss , 2011, J. Comput. Chem..
[51] D. L. Cooper,et al. Influence of atoms-in-molecules methods on shared-electron distribution indices and domain-averaged Fermi holes. , 2010, The journal of physical chemistry. A.
[52] F. Peeters,et al. Paramagnetic adsorbates on graphene: a charge transfer analysis , 2008, 0806.0549.
[53] David S Sholl,et al. Chemically Meaningful Atomic Charges That Reproduce the Electrostatic Potential in Periodic and Nonperiodic Materials. , 2010, Journal of chemical theory and computation.
[54] G. Kresse,et al. From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .
[55] P. Mori-Sánchez,et al. Hirshfeld surfaces as approximations to interatomic surfaces , 2002 .