Hypernetwork Memory-Based Model for Infant's Language Learning

One of the critical themes in the language acquisition is its exposure to linguistic environments. Linguistic environments, which interact with infants, include not only human beings such as its parents but also artificially crafted linguistic media as their functioning elements. An infant learns a language by exploring these extensive language environments around it. Based on such large linguistic data exposure, we propose a machine learning based method on the cognitive mechanism that simulate flexibly and appropriately infant's language learning. The infant's initial stage of language learning comes with sentence learning and creation, which can be simulated by exposing it to a language corpus. The core of the simulation is a memory-based learning model which has language hypernetwork structure. The language hypernetwork simulates developmental and progressive language learning using the structure of new data stream through making it representing of high level connection between language components possible. In this paper, we simulates an infant's gradual and developmental learning progress by training language hypernetwork gradually using 32,744 sentences extracted from video scripts of commercial animation movies for children.