A Godunov-like point-centered essentially Lagrangian hydrodynamic approach

We present an essentially Lagrangian hydrodynamic scheme suitable for modeling complex compressible flows on tetrahedron meshes. The scheme reduces to a purely Lagrangian approach when the flow is linear or if the mesh size is equal to zero; as a result, we use the term essentially Lagrangian for the proposed approach. The motivation for developing a hydrodynamic method for tetrahedron meshes is because tetrahedron meshes have some advantages over other mesh topologies. Notable advantages include reduced complexity in generating conformal meshes, reduced complexity in mesh reconnection, and preserving tetrahedron cells with automatic mesh refinement. A challenge, however, is tetrahedron meshes do not correctly deform with a lower order (i.e. piecewise constant) staggered-grid hydrodynamic scheme (SGH) or with a cell-centered hydrodynamic (CCH) scheme. The SGH and CCH approaches calculate the strain via the tetrahedron, which can cause artificial stiffness on large deformation problems. To resolve the stiffness problem, we adopt the point-centered hydrodynamic approach (PCH) and calculate the evolution of the flow via an integration path around the node. The PCH approach stores the conserved variables (mass, momentum, and total energy) at the node. The evolution equations for momentum and total energy are discretized using an edge-based finite element (FE) approach with linear basis functions. A multidirectional Riemann-like problem is introduced at the center of the tetrahedron to account for discontinuities in the flow such as a shock. Conservation is enforced at each tetrahedron center. The multidimensional Riemann-like problem used here is based on Lagrangian CCH work 8,19,37,38,44 and recent Lagrangian SGH work 33-35,39,45. In addition, an approximate 1D Riemann problem is solved on each face of the nodal control volume to advect mass, momentum, and total energy. The 1D Riemann problem produces fluxes 18 that remove a volume error in the PCH discretization. A 2-stage Runge-Kutta method is used to evolve the solution in time. The details of the new hydrodynamic scheme are discussed; likewise, results from numerical test problems are presented.

[1]  Raphaël Loubère,et al.  A second-order compatible staggered Lagrangian hydrodynamics scheme using a cell-centered multidimensional approximate Riemann solver , 2010, ICCS.

[2]  G. Sod A survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws , 1978 .

[3]  S. Marsh Lasl Shock Hugoniot Data , 1980 .

[4]  J. Glinsky,et al.  The general. , 1982, Nursing.

[5]  P. Váchal,et al.  Formulation of a Staggered Two-Dimensional Lagrangian Scheme by Means of Cell-Centered Approximate Riemann Solver , 2010 .

[6]  Nathaniel R. Morgan,et al.  A Lagrangian staggered grid Godunov-like approach for hydrodynamics , 2014, J. Comput. Phys..

[7]  D. Juric,et al.  A front-tracking method for the computations of multiphase flow , 2001 .

[8]  Philip L. Roe,et al.  A cell centred Lagrangian Godunov scheme for shock hydrodynamics , 2011 .

[9]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[10]  A. Burbeau-Augoula,et al.  A Node-Centered Artificial Viscosity Method for Two-Dimensional Lagrangian Hydrodynamics Calculations on a Staggered Grid , 2010 .

[11]  Raphaël Loubère Contribution to Lagrangian and Arbitrary-Lagrangian-Eulerian numerical schemes. (Contribution au domaine des méthodes numériques Lagrangiennes et Arbitrary-Lagrangian-Eulerian) , 2013 .

[12]  Micah J. Esmond,et al.  One Dimensional Lagrangian Hydrocode Development , 2013 .

[13]  Marc R.J. Charest,et al.  A three-dimensional finite element arbitrary Lagrangian–Eulerian method for shock hydrodynamics on unstructured grids☆ , 2014 .

[14]  Rémi Abgrall,et al.  A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..

[15]  P. Woodward,et al.  SLIC (Simple Line Interface Calculation) , 1976 .

[16]  John K. Dukowicz,et al.  A general, non-iterative Riemann solver for Godunov's method☆ , 1985 .

[17]  S. K. Godunov,et al.  Reminiscences about Difference Schemes , 1999 .

[18]  Nathaniel R. Morgan,et al.  A dissipation model for staggered grid Lagrangian hydrodynamics , 2013 .

[19]  C. Zemach,et al.  CAVEAT: A computer code for fluid dynamics problems with large distortion and internal slip. Revision 1 , 1992 .

[20]  Bruno Després,et al.  Numerical resolution of a two-component compressible fluid model with interfaces , 2007 .

[21]  M. Wilkins Calculation of Elastic-Plastic Flow , 1963 .

[22]  Bruno Després,et al.  Lagrangian Gas Dynamics in Two Dimensions and Lagrangian systems , 2005 .

[23]  L YoungsD,et al.  Time-dependent multi-material flow with large fluid distortion. , 1982 .

[24]  Donald E. Burton,et al.  Multidimensional discretization of conservation laws for unstructured polyhedral grids , 1994 .

[25]  Guglielmo Scovazzi,et al.  Lagrangian shock hydrodynamics on tetrahedral meshes: A stable and accurate variational multiscale approach , 2012, J. Comput. Phys..

[26]  Veselin Dobrev,et al.  Curvilinear finite elements for Lagrangian hydrodynamics , 2011 .

[27]  C. L. Rousculp,et al.  A Compatible, Energy and Symmetry Preserving Lagrangian Hydrodynamics Algorithm in Three-Dimensional Cartesian Geometry , 2000 .

[28]  William P. Walters,et al.  Explosive effects and applications , 1998 .

[29]  Michael L. Gittings,et al.  TRIX: A free-lagrangian hydrocode , 1991 .

[30]  Raphaël Loubère,et al.  Staggered Lagrangian Discretization Based on Cell-Centered Riemann Solver and Associated Hydrodynamics Scheme , 2011 .

[31]  John K. Dukowicz,et al.  Vorticity errors in multidimensional Lagrangian codes , 1992 .

[32]  T. Belytschko,et al.  A uniform strain hexahedron and quadrilateral with orthogonal hourglass control , 1981 .

[33]  L Howarth Similarity and Dimensional Methods in Mechanics , 1960 .

[34]  Nathaniel R. Morgan,et al.  An approach for treating contact surfaces in Lagrangian cell-centered hydrodynamics , 2013, J. Comput. Phys..

[35]  M. Shashkov,et al.  Elimination of Artificial Grid Distortion and Hourglass-Type Motions by Means of Lagrangian Subzonal Masses and Pressures , 1998 .

[36]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[37]  Manjit S. Sahota An explicit-implicit solution of the hydrodynamic and radiation equations , 1991 .

[38]  David C. Look,et al.  Defect Models in Electron-Irradiated N-Type GaAs , 1992 .

[39]  A. J. Barlow,et al.  A high order cell centred dual grid Lagrangian Godunov scheme , 2013 .

[40]  W. F. Noh Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .

[41]  John K. Dukowicz,et al.  A general topology, Godunov method , 1988 .

[42]  M. Shashkov,et al.  The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy , 1998 .

[43]  J. Waltz Microfluidics simulation using adaptive unstructured grids , 2004 .

[44]  Christian Rohde,et al.  An Introduction to Recent Developments in Theory and Numerics for Conservation Laws: Proceedings of the International School on Theory and Numerics for Conservation Laws, Freiburg/Littenweiler, Germany, October 20-24, 1997 , 1999, Theory and Numerics for Conservation Laws.

[45]  S. F. Davis Simplified second-order Godunov-type methods , 1988 .

[46]  Jay P. Boris,et al.  The Lagrangian solution of transient problems in hydrodynamics using a triangular mesh , 1979 .

[47]  W. P. Crowley,et al.  Free-lagrange methods for compressible hydrodynamics in two space dimensions , 1985 .

[48]  Nathaniel R. Morgan,et al.  Verification of a three-dimensional unstructured finite element method using analytic and manufactured solutions ☆ , 2013 .

[49]  N. Morgan A New Liquid-Vapor Phase Transition Technique for the Level Set Method , 2005 .

[50]  William J. Rider,et al.  A conservative nodal variational multiscale method for Lagrangian shock hydrodynamics , 2010 .

[51]  R. D. Richtmyer,et al.  A Method for the Numerical Calculation of Hydrodynamic Shocks , 1950 .

[52]  Pierre-Henri Maire,et al.  A high-order cell-centered Lagrangian scheme for compressible fluid flows in two-dimensional cylindrical geometry , 2009, J. Comput. Phys..

[53]  Mark L. Wilkins,et al.  Use of artificial viscosity in multidimensional fluid dynamic calculations , 1980 .

[54]  Pierre-Henri Maire,et al.  A high-order cell-centered Lagrangian scheme for two-dimensional compressible fluid flows on unstructured meshes , 2009, J. Comput. Phys..

[55]  John K. Dukowicz,et al.  A general topology Godunov method , 1989 .

[56]  R. A. Clark The evolution of HOBO , 1987 .

[57]  Nathaniel R. Morgan,et al.  A cell-centered Lagrangian Godunov-like method for solid dynamics , 2013 .

[58]  M. Holt,et al.  Proceedings of the Second International Conference on Numerical Methods in Fluid Dynamics , 1971 .

[59]  Raphaël Loubère,et al.  3D staggered Lagrangian hydrodynamics scheme with cell‐centered Riemann solver‐based artificial viscosity , 2013 .

[60]  L. G. Margolin,et al.  A method for treating hourglass patterns , 1987 .

[61]  V. Venkatakrishnan Convergence to steady state solutions of the Euler equations on unstructured grids with limiters , 1995 .