Dynamics of chromatin accessibility during TGF-β-induced EMT of Ras-transformed mammary gland epithelial cells

[1]  P. Hinds Faculty of 1000 evaluation for Epithelial-Mesenchymal Plasticity: A Central Regulator of Cancer Progression. , 2017 .

[2]  J. Wrana Faculty of 1000 evaluation for TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. , 2017 .

[3]  Xiao-Fan Wang,et al.  TGF-β Family Signaling in the Control of Cell Proliferation and Survival. , 2017, Cold Spring Harbor perspectives in biology.

[4]  John G Doench,et al.  ATXN1L, CIC, and ETS Transcription Factors Modulate Sensitivity to MAPK Pathway Inhibition. , 2017, Cell reports.

[5]  Xin-Hua Feng,et al.  Posttranslational Regulation of Smads. , 2016, Cold Spring Harbor perspectives in biology.

[6]  S. Asthana,et al.  Inactivation of Capicua drives cancer metastasis , 2016, Nature Genetics.

[7]  R. Derynck,et al.  TGF-β and the TGF-β Family: Context-Dependent Roles in Cell and Tissue Physiology. , 2016, Cold Spring Harbor perspectives in biology.

[8]  K. Miyazono,et al.  The Arkadia-ESRP2 axis suppresses tumor progression: analyses in clear-cell renal cell carcinoma , 2015, Oncogene.

[9]  R. Weinberg,et al.  Epithelial-Mesenchymal Plasticity: A Central Regulator of Cancer Progression. , 2015, Trends in cell biology.

[10]  H. Aburatani,et al.  Genomewide Comprehensive Analysis Reveals Critical Cooperation Between Smad and c‐Fos in RANKL‐Induced Osteoclastogenesis , 2015, Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research.

[11]  Mark D. Biggin,et al.  Statistics requantitates the central dogma , 2015, Science.

[12]  S. Jalkanen,et al.  TGF-β1-Induced Epithelial–Mesenchymal Transition Promotes Monocyte/Macrophage Properties in Breast Cancer Cells , 2015, Front. Oncol..

[13]  I. Amit,et al.  Tissue-Resident Macrophage Enhancer Landscapes Are Shaped by the Local Microenvironment , 2014, Cell.

[14]  H. Aburatani,et al.  A Smad3 and TTF-1/NKX2-1 complex regulates Smad4-independent gene expression , 2014, Cell Research.

[15]  H. Aburatani,et al.  Transforming growth factor-β-induced lncRNA-Smad7 inhibits apoptosis of mouse breast cancer JygMC(A) cells , 2014, Cancer science.

[16]  Samy Lamouille,et al.  Molecular mechanisms of epithelial–mesenchymal transition , 2014, Nature Reviews Molecular Cell Biology.

[17]  Wai Leong Tam,et al.  The epigenetics of epithelial-mesenchymal plasticity in cancer , 2013, Nature Medicine.

[18]  R. Cardiff,et al.  ETV4 promotes metastasis in response to activation of PI3-kinase and Ras signaling in a mouse model of advanced prostate cancer , 2013, Proceedings of the National Academy of Sciences.

[19]  U. Landegren,et al.  Specific interactions between Smad proteins and AP-1 components determine TGFβ-induced breast cancer cell invasion , 2013, Oncogene.

[20]  G. Natoli,et al.  Latent Enhancers Activated by Stimulation in Differentiated Cells , 2013, Cell.

[21]  Samy Lamouille,et al.  TGF-&bgr; signaling and epithelial–mesenchymal transition in cancer progression , 2013, Current opinion in oncology.

[22]  P. Bickel,et al.  System wide analyses have underestimated protein abundances and the importance of transcription in mammals , 2012, PeerJ.

[23]  R. Notaro,et al.  Overexpression of ETV4 is oncogenic in prostate cells through promotion of both cell proliferation and epithelial to mesenchymal transition , 2012, Oncogenesis.

[24]  D. Patel,et al.  A Poised Chromatin Platform for TGF-β Access to Master Regulators , 2011, Cell.

[25]  K. Miyazono,et al.  TGF-β drives epithelial-mesenchymal transition through δEF1-mediated downregulation of ESRP , 2011, Oncogene.

[26]  Peter C. Hollenhorst,et al.  Oncogenic ETS proteins mimic activated RAS/MAPK signaling in prostate cells. , 2011, Genes & development.

[27]  Nathan C. Sheffield,et al.  Open chromatin defined by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. , 2011, Genome research.

[28]  H. Aburatani,et al.  Global Mapping of Cell Type–Specific Open Chromatin by FAIRE-seq Reveals the Regulatory Role of the NFI Family in Adipocyte Differentiation , 2011, PLoS genetics.

[29]  Myong-Hee Sung,et al.  Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. , 2011, Molecular cell.

[30]  Philip Machanick,et al.  MEME-ChIP: motif analysis of large DNA datasets , 2011, Bioinform..

[31]  N. Osumi,et al.  Stabilization of ATF4 protein is required for the regulation of epithelial-mesenchymal transition of the avian neural crest. , 2010, Developmental biology.

[32]  Karen L. Mohlke,et al.  A map of open chromatin in human pancreatic islets , 2010, Nature Genetics.

[33]  L. Young,et al.  Pea3 Transcription Factors and Wnt1-Induced Mouse Mammary Neoplasia , 2010, PloS one.

[34]  R. Huang,et al.  Epithelial-Mesenchymal Transitions in Development and Disease , 2009, Cell.

[35]  P. Giresi,et al.  Isolation of active regulatory elements from eukaryotic chromatin using FAIRE (Formaldehyde Assisted Isolation of Regulatory Elements). , 2009, Methods.

[36]  Takeshi Imamura,et al.  Role of Ras Signaling in the Induction of Snail by Transforming Growth Factor-β* , 2009, Journal of Biological Chemistry.

[37]  H. Aburatani,et al.  Chromatin Immunoprecipitation on Microarray Analysis of Smad2/3 Binding Sites Reveals Roles of ETS1 and TFAP2A in Transforming Growth Factor β Signaling , 2008, Molecular and Cellular Biology.

[38]  V. Firlej,et al.  Reduced tumorigenesis in mouse mammary cancer cells following inhibition of Pea3- or Erm-dependent transcription , 2008, Journal of Cell Science.

[39]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[40]  C. Heldin,et al.  Signaling networks guiding epithelial–mesenchymal transitions during embryogenesis and cancer progression , 2007, Cancer science.

[41]  S. Dhanasekaran,et al.  Distinct classes of chromosomal rearrangements create oncogenic ETS gene fusions in prostate cancer , 2007, Nature.

[42]  William Stafford Noble,et al.  Quantifying similarity between motifs , 2007, Genome Biology.

[43]  K. Miyazono,et al.  Ki26894, a novel transforming growth factor‐β type I receptor kinase inhibitor, inhibits in vitro invasion and in vivo bone metastasis of a human breast cancer cell line , 2007, Cancer science.

[44]  G. Hortobagyi,et al.  Antitumor activity of an Ets protein, PEA3, in breast cancer cell lines MDA‐MB‐361DYT2 and BT474M1 , 2006, Molecular carcinogenesis.

[45]  Brian Bierie,et al.  Tumour microenvironment: TGFβ: the molecular Jekyll and Hyde of cancer , 2006, Nature Reviews Cancer.

[46]  J. Tchinda,et al.  Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. , 2006, Science.

[47]  J. Thiery,et al.  Complex networks orchestrate epithelial–mesenchymal transitions , 2006, Nature Reviews Molecular Cell Biology.

[48]  R. Derynck,et al.  SPECIFICITY AND VERSATILITY IN TGF-β SIGNALING THROUGH SMADS , 2005 .

[49]  Pablo Tamayo,et al.  Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[50]  H. Spring,et al.  Tumor cell invasiveness correlates with changes in integrin expression and localization , 2005, Oncogene.

[51]  F. Révillion,et al.  Prognostic Value of ERM Gene Expression in Human Primary Breast Cancers , 2004, Clinical Cancer Research.

[52]  I. Bièche,et al.  Expression of PEA3/E1AF/ETV4, an Ets-related transcription factor, in breast tumors: positive links to MMP2, NRG1 and CGB expression. , 2003, Carcinogenesis.

[53]  H. Beug,et al.  Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis , 2003, Nature Reviews Molecular Cell Biology.

[54]  L. Wakefield,et al.  The two faces of transforming growth factor β in carcinogenesis , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[55]  J. Massagué,et al.  Mechanisms of TGF-β Signaling from Cell Membrane to the Nucleus , 2003, Cell.

[56]  K. Miyazono,et al.  Regulation of TGF‐β signaling and its roles in progression of tumors , 2003 .

[57]  K. Miyazono,et al.  Two major Smad pathways in TGF‐β superfamily signalling , 2002, Genes to cells : devoted to molecular & cellular mechanisms.

[58]  A. Balmain,et al.  Metastasis is driven by sequential elevation of H-ras and Smad2 levels , 2002, Nature Cell Biology.

[59]  Ken Yagi,et al.  c-myc Is a Downstream Target of the Smad Pathway* 210 , 2002, The Journal of Biological Chemistry.

[60]  W. Muller,et al.  The pea3 subfamily ets genes are required for HER2/Neu-mediated mammary oncogenesis , 2001, Current Biology.

[61]  H. Lodish,et al.  Role of transforming growth factor beta in human disease. , 2000, The New England journal of medicine.

[62]  M. Hung,et al.  The Ets protein PEA3 suppresses HER-2/neu overexpression and inhibits tumorigenesis , 2000, Nature Medicine.

[63]  R. Derynck,et al.  Smad3 and Smad4 cooperate with c-Jun/c-Fos to mediate TGF-β-induced transcription , 1998, Nature.

[64]  Kohei Miyazono,et al.  TGF-β signalling from cell membrane to nucleus through SMAD proteins , 1997, Nature.

[65]  H. Beug,et al.  TGF-beta1 and Ha-Ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. , 1996, Genes & development.

[66]  Jun S. Liu,et al.  Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. , 1993, Science.

[67]  A. Moustakas,et al.  Actions of TGF-β as tumor suppressor and pro-metastatic factor in human cancer , 2007 .

[68]  H. Lodish,et al.  Role of Transforming Growth Factor in Human Disease , 2000 .