Noise Reduction of cDNA Microarray Images Using Complex Wavelets

Noise reduction is an essential step of cDNA microarray image analysis for obtaining better-quality gene expression measurements. Wavelet-based denoising methods have shown significant success in traditional image processing. The complex wavelet transform (CWT) is preferred to the classical discrete wavelet transform for denoising of microarray images due to its improved directional selectivity for better representation of the circular edges of spots and near shift-invariance property. Existing CWT-based denoising methods are not efficient for microarray image processing because they fail to take into account the signal as well as noise correlations that exist between red and green channel images. In this paper, two bivariate estimators are developed for the CWT-based denoising of microarray images using the standard maximum a posteriori and linear minimum mean squared error estimation criteria. The proposed denoising methods are capable of taking into account both the interchannel signal and noise correlations. Significance of the proposed denoising methods is assessed by examining the effect of noise reduction on the estimation of the log-intensity ratio. Extensive experimentations are carried out to show that the proposed methods provide better noise reduction of microarray images leading to more accurate estimation of the log-intensity ratios as compared to the other CWT-based denoising methods.

[1]  K. Mardia Measures of multivariate skewness and kurtosis with applications , 1970 .

[2]  Yuan-Ting Zhang,et al.  Signal processing techniques in genomic engineering , 2002, Proc. IEEE.

[3]  Md. Kamrul Hasan,et al.  Wavelet-domain iterative center weighted median filter for image denoising , 2003, Signal Process..

[4]  Levent Sendur,et al.  Bivariate shrinkage functions for wavelet-based denoising exploiting interscale dependency , 2002, IEEE Trans. Signal Process..

[5]  Donald A. Adjeroh,et al.  On denoising and compression of DNA microarray images , 2006, Pattern Recognit..

[6]  Diego Clonda,et al.  Complex Daubechies wavelets: properties and statistical image modelling , 2004, Signal Process..

[7]  V.S. Tseng,et al.  Efficiently mining gene expression data via a novel parameterless clustering method , 2005, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[8]  Kevin H. Kim Univariate and Multivariate General Linear Models : Theory and Applications with SAS, Second Edition , 2006 .

[9]  Jorge Luis Romeu,et al.  A comparative study of goodness-of-fit tests for multivariate normality , 1993 .

[10]  Geoffrey J. McLachlan,et al.  Analyzing Microarray Gene Expression Data , 2004 .

[11]  Terence P. Speed,et al.  Comparison of Methods for Image Analysis on cDNA Microarray Data , 2002 .

[12]  Nick G. Kingsbury,et al.  Unsupervised image segmentation via Markov trees and complex wavelets , 2002, Proceedings. International Conference on Image Processing.

[13]  Eero P. Simoncelli,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000, International Journal of Computer Vision.

[14]  Pietro Liò,et al.  Wavelets in bioinformatics and computational biology: state of art and perspectives , 2003, Bioinform..

[15]  Rastislav Lukac,et al.  APPLICATION OF THE ADAPTIVE CENTER-WEIGHTED VECTOR MEDIAN FRAMEWORK FOR THE ENHANCEMENT OF CDNA MICROARRAY IMAGES , 2003 .

[16]  Amel Benazza-Benyahia,et al.  Building robust wavelet estimators for multicomponent images using Stein's principle , 2005, IEEE Transactions on Image Processing.

[17]  PortillaJavier,et al.  A Parametric Texture Model Based on Joint Statistics of Complex Wavelet Coefficients , 2000 .

[18]  Nick G. Kingsbury,et al.  Image Modeling Using Interscale Phase Properties of Complex Wavelet Coefficients , 2008, IEEE Transactions on Image Processing.

[19]  R M Rangayyan,et al.  Adaptive-neighborhood filtering of images corrupted by signal-dependent noise. , 1998, Applied optics.

[20]  M. Simon Probability distributions involving Gaussian random variables : a handbook for engineers and scientists , 2002 .

[21]  George C. Kagadis,et al.  Improving gene quantification by adjustable spot-image restoration , 2007, Bioinform..

[22]  Marvin K. Simon,et al.  Probability Distributions Involving Gaussian Random Variables: A Handbook for Engineers, Scientists and Mathematicians , 2006 .

[23]  R.S.H. Istepanian,et al.  Application of wavelet modulus maxima in microarray spots recognition , 2003, IEEE Transactions on NanoBioscience.

[24]  Martin Vetterli,et al.  Spatially adaptive wavelet thresholding with context modeling for image denoising , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[25]  S.W. Davies,et al.  DNA microarray stochastic model , 2005, IEEE Transactions on NanoBioscience.

[26]  I. Selesnick,et al.  Bivariate shrinkage with local variance estimation , 2002, IEEE Signal Processing Letters.

[27]  I. Johnstone,et al.  Adapting to Unknown Smoothness via Wavelet Shrinkage , 1995 .

[28]  Adhemar Bultheel,et al.  Empirical Bayes Approach to Improve Wavelet Thresholding for Image Noise Reduction , 2001 .

[29]  C. Boncelet Image Noise Models , 2009 .

[30]  Scott R. Eliason Maximum likelihood estimation: Logic and practice. , 1994 .

[31]  Federico E. Turkheimer,et al.  Chromosomal patterns of gene expression from microarray data: methodology, validation and clinical relevance in gliomas , 2006, BMC Bioinformatics.

[32]  Alin Achim,et al.  Image denoising using bivariate α-stable distributions in the complex wavelet domain , 2005, IEEE Signal Processing Letters.

[33]  R.S.H. Istepanian,et al.  Microarray image enhancement by denoising using stationary wavelet transform , 2003, IEEE Transactions on NanoBioscience.

[34]  Christophe Garcia,et al.  WaveRead: Automatic measurement of relative gene expression levels from microarrays using wavelet analysis , 2006, J. Biomed. Informatics.

[35]  C. Sidney Burrus,et al.  A new framework for complex wavelet transforms , 2003, IEEE Trans. Signal Process..

[36]  Aleksandra Pizurica,et al.  Estimating the probability of the presence of a signal of interest in multiresolution single- and multiband image denoising , 2006, IEEE Transactions on Image Processing.

[37]  Jaakko Hollmén,et al.  Image Analysis for Detecting Faulty Spots from Microarray Images , 2002, Discovery Science.

[38]  Ernst Wit,et al.  Statistics for Microarrays : Design, Analysis and Inference , 2004 .

[39]  I. Selesnick Hilbert transform pairs of wavelet bases , 2001, IEEE Signal Processing Letters.

[40]  Jörg Rahnenführer,et al.  Unsupervised technique for robust target separation and analysis of DNA microarray spots through adaptive pixel clustering , 2002, Bioinform..

[41]  Kannan Ramchandran,et al.  Microarray image compression: SLOCO and the effect of information loss , 2003, Signal Processing.

[42]  Pierre Moulin,et al.  Information-theoretic analysis of interscale and intrascale dependencies between image wavelet coefficients , 2001, IEEE Trans. Image Process..

[43]  Radhakrishnan Nagarajan,et al.  Correlation Statistics for cDNA Microarray Image Analysis , 2005, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[44]  S. E. Ahmed,et al.  Univariate and Multivariate General Linear Models—Theory and Applications With SAS , 2008, Technometrics.

[45]  C. Taylor Handbook of Immunohistochemistry and in Situ Hybridization of Human Carcinomas , 2006 .

[46]  Wei Zhang,et al.  Microarray Quality Control: Zhang/Microarray Quality Control , 2005 .

[47]  G. Nason,et al.  Real nonparametric regression using complex wavelets , 2004 .

[48]  W. J. DeCoursey,et al.  Introduction: Probability and Statistics , 2003 .

[49]  Aidong Zhang,et al.  Advanced Analysis of Gene Expression Microarray Data , 2006, Science, Engineering, and Biology Informatics.

[50]  G. Magoulas,et al.  Improved processing of microarray data using image reconstruction techniques , 2003, IEEE Transactions on NanoBioscience.

[51]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[52]  N. Kingsbury Complex Wavelets for Shift Invariant Analysis and Filtering of Signals , 2001 .

[53]  A. Venetsanopoulos,et al.  A multichannel order-statistic technique for cDNA microarray image processing , 2004, IEEE Transactions on NanoBioscience.

[54]  Y. Chaubey,et al.  Wavelet-Based Noise Reduction by Joint Statistical Modeling of cDNA Microarray Images , 2009 .

[55]  Marimuthu Palaniswami,et al.  Orthonormal Hilbert-Pair of Wavelets With (Almost) Maximum Vanishing Moments , 2006, IEEE Signal Processing Letters.

[56]  N. Kingsbury Image processing with complex wavelets , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[57]  Rastislav Lukac,et al.  cDNA microarray image processing using fuzzy vector filtering framework , 2005, Fuzzy Sets Syst..

[58]  Edward H. Adelson,et al.  Noise removal via Bayesian wavelet coring , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[59]  E. Kamen,et al.  Introduction to Optimal Estimation , 1999 .

[60]  B. Silverman,et al.  Incorporating Information on Neighboring Coefficients Into Wavelet Estimation , 2001 .

[61]  Tamanna Howlader,et al.  Bivariate Estimator for cDNA Microarray Images Using Complex Wavelets , 2008, BIOCOMP.

[62]  Yoganand Balagurunathan,et al.  Simulation of cDNA microarrays via a parameterized random signal model. , 2002, Journal of biomedical optics.

[63]  Richard Baraniuk,et al.  The Dual-tree Complex Wavelet Transform , 2007 .

[64]  S. Mallat A wavelet tour of signal processing , 1998 .

[65]  J. Olkkonen,et al.  Hilbert transform assisted complex wavelet transform for neuroelectric signal analysis , 2006, Journal of Neuroscience Methods.

[66]  Ya Zhang,et al.  Data-Dependent Kernel Machines for Microarray Data Classification , 2007, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[67]  Martin J. Wainwright,et al.  Image denoising using scale mixtures of Gaussians in the wavelet domain , 2003, IEEE Trans. Image Process..

[68]  Federico E. Turkheimer,et al.  Wavelet analysis of gene expression (WAGE) , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[69]  Ivan W. Selesnick,et al.  The design of approximate Hilbert transform pairs of wavelet bases , 2002, IEEE Trans. Signal Process..

[70]  Joseph A. Wolkan Introduction to Probability and Statistics (2nd ed.) , 1992 .

[71]  Mario Mastriani,et al.  Microarrays Denoising via Smoothing of Coefficients in Wavelet Domain , 2007, 1807.11571.

[72]  P. Laguna,et al.  Signal Processing , 2002, Yearbook of Medical Informatics.