Hyperpolarization-activated cation currents: from molecules to physiological function.

Hyperpolarization-activated cation currents, termed If, Ih, or Iq, were initially discovered in heart and nerve cells over 20 years ago. These currents contribute to a wide range of physiological functions, including cardiac and neuronal pacemaker activity, the setting of resting potentials, input conductance and length constants, and dendritic integration. The hyperpolarization-activated, cation nonselective (HCN) gene family encodes the channels that underlie Ih. Here we review the relation between the biophysical properties of recombinant HCN channels and the pattern of HCN mRNA expression with the properties of native Ih in neurons and cardiac muscle. Moreover, we consider selected examples of the expanding physiological functions of Ih with a view toward understanding how the properties of HCN channels contribute to these diverse functional roles.

[1]  Masao Nishimura,et al.  The role of Ca2+ release from sarcoplasmic reticulum in the regulation of sinoatrial node automaticity , 1996, Heart and Vessels.

[2]  D. DiFrancesco Some properties of the UL-FS 49 block of the hyperpolarization-activated current (if) in sino-atrial node myocytes , 1994, Pflügers Archiv.

[3]  Phosphatase inhibition by calyculin A increases if in canine Purkinje fibers and myocytes , 1993, Pflügers Archiv.

[4]  A. Noma,et al.  Does the “pacemaker current” generate the diastolic depolarization in the rabbit SA node cells? , 1983, Pflügers Archiv.

[5]  H. Irisawa,et al.  Inward current activated during hyperpolarization in the rabbit sinoatrial node cell , 1980, Pflügers Archiv.

[6]  A. Noma,et al.  Membrane currents in the rabbit sinoatrial node cell as studied by the double microelectrode method , 1976, Pflügers Archiv.

[7]  F. Elinder,et al.  Voltage-sensing mechanism is conserved among ion channels gated by opposite voltages , 2002, Nature.

[8]  E. Accili,et al.  Different Roles for the Cyclic Nucleotide Binding Domain and Amino Terminus in Assembly and Expression of Hyperpolarization-activated, Cyclic Nucleotide-gated Channels* , 2002, The Journal of Biological Chemistry.

[9]  D. Johnston,et al.  Pharmacological upregulation of h-channels reduces the excitability of pyramidal neuron dendrites , 2002, Nature Neuroscience.

[10]  G. Vargas,et al.  Modulation by PKA of the Hyperpolarization-activated Current (Ih) in Cultured Rat Olfactory Receptor Neurons , 2002, The Journal of Membrane Biology.

[11]  Martin Biel,et al.  Cardiac HCN channels: structure, function, and modulation. , 2002, Trends in cardiovascular medicine.

[12]  G. Demontis,et al.  Functional characterisation and subcellular localisation of HCN1 channels in rabbit retinal rod photoreceptors , 2002, The Journal of physiology.

[13]  P. Castillo,et al.  Assessing the role of Ih channels in synaptic transmission and mossy fiber LTP , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[14]  E. Marbán,et al.  Dominant-Negative Suppression of HCN1- and HCN2-Encoded Pacemaker Currents by an Engineered HCN1 Construct: Insights Into Structure-Function Relationships and Multimerization , 2002, Circulation research.

[15]  D. Ulrich,et al.  Dendritic resonance in rat neocortical pyramidal cells. , 2002, Journal of neurophysiology.

[16]  T. Baram,et al.  Developmental Febrile Seizures Modulate Hippocampal Gene Expression of Hyperpolarization-Activated Channels in an Isoform- and Cell-Specific Manner , 2002, The Journal of Neuroscience.

[17]  D. Clapham Hot and Cold TRP Ion Channels , 2002, Science.

[18]  M. Andreasen,et al.  Influence of the hyperpolarization-activated cation current, Ih, on the electrotonic properties of the distal apical dendrites of hippocampal CA1 pyramidal neurones , 2002, Brain Research.

[19]  C. Belmonte,et al.  Specificity of cold thermotransduction is determined by differential ionic channel expression , 2002, Nature Neuroscience.

[20]  Michael Häusser,et al.  Membrane potential bistability is controlled by the hyperpolarization‐activated current IH in rat cerebellar Purkinje neurons in vitro , 2002, The Journal of physiology.

[21]  Catherine Proenza,et al.  Pacemaker Channels Produce an Instantaneous Current* , 2002, The Journal of Biological Chemistry.

[22]  D DiFrancesco,et al.  From funny current to HCN channels: 20 years of excitation. , 2002, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[23]  R. Froemke,et al.  Temporal Synaptic Tagging by Ih Activation and Actin Involvement in Long-Term Facilitation and cAMP-Induced Synaptic Enhancement , 2002, Neuron.

[24]  G. Buzsáki Theta Oscillations in the Hippocampus , 2002, Neuron.

[25]  R. Nicoll,et al.  Mediation of Hippocampal Mossy Fiber Long-Term Potentiation by Presynaptic Ih Channels , 2002, Science.

[26]  P. Phale,et al.  Voltage-Controlled Gating at the Intracellular Entrance to a Hyperpolarization-Activated Cation Channel , 2002, The Journal of general physiology.

[27]  D. Clapham Signal transduction. Hot and cold TRP ion channels. , 2002, Science.

[28]  M. Sanguinetti,et al.  Voltage sensing and activation gating of HCN pacemaker channels. , 2002, Trends in cardiovascular medicine.

[29]  T. Satoh,et al.  Multiple inhibitory effects of zatebradine (UL-FS 49) on the electrophysiological properties of retinal rod photoreceptors , 2002, Pflügers Archiv - European Journal of Physiology.

[30]  E. Nestler,et al.  Molecular and functional analysis of hyperpolarization‐activated pacemaker channels in the hippocampus after entorhinal cortex lesion , 2001, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[31]  J. Magee,et al.  Distance-Dependent Increase in AMPA Receptor Number in the Dendrites of Adult Hippocampal CA1 Pyramidal Neurons , 2001, The Journal of Neuroscience.

[32]  Bernd Lindemann,et al.  Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli , 2001, Nature.

[33]  Jun Chen,et al.  The S4–S5 linker couples voltage sensing and activation of pacemaker channels , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Adrian Y. C. Wong,et al.  Modulation of a presynaptic hyperpolarization‐activated cationic current (Ih) at an excitatory synaptic terminal in the rat auditory brainstem , 2001, The Journal of physiology.

[35]  U. Ravens,et al.  The hyperpolarization-activated current If in ventricular myocytes of non-transgenic and β2-adrenoceptor overexpressing mice , 2001, Naunyn-Schmiedeberg's Archives of Pharmacology.

[36]  R B Robinson,et al.  HCN2 Overexpression in Newborn and Adult Ventricular Myocytes: Distinct Effects on Gating and Excitability , 2001, Circulation research.

[37]  J. Magee Dendritic mechanisms of phase precession in hippocampal CA1 pyramidal neurons. , 2001, Journal of neurophysiology.

[38]  D. Mckinnon,et al.  MinK-Related Peptide 1: A &bgr; Subunit for the HCN Ion Channel Subunit Family Enhances Expression and Speeds Activation , 2001, Circulation research.

[39]  Ira S. Cohen,et al.  MinK-Related Peptide 1 , 2001 .

[40]  E. Lakatta,et al.  Sinoatrial Nodal Cell Ryanodine Receptor and Na + -Ca 2+ Exchanger: Molecular Partners in Pacemaker Regulation , 2001, Circulation research.

[41]  S. Siegelbaum,et al.  Molecular mechanism of cAMP modulation of HCN pacemaker channels , 2001, Nature.

[42]  S. Siegelbaum,et al.  Properties of Hyperpolarization-Activated Pacemaker Current Defined by Coassembly of Hcn1 and Hcn2 Subunits and Basal Modulation by Cyclic Nucleotide , 2001, The Journal of general physiology.

[43]  M. Biel,et al.  Cellular expression and functional characterization of four hyperpolarization-activated pacemaker channels in cardiac and neuronal tissues. , 2001, European journal of biochemistry.

[44]  J. Tytgat,et al.  Functional Heteromerization of HCN1 and HCN2 Pacemaker Channels* , 2001, The Journal of Biological Chemistry.

[45]  A. Mugelli,et al.  The properties of the pacemaker current I(F)in human ventricular myocytes are modulated by cardiac disease. , 2001, Journal of molecular and cellular cardiology.

[46]  Ivan Soltesz,et al.  Persistently modified h-channels after complex febrile seizures convert the seizure-induced enhancement of inhibition to hyperexcitability , 2001, Nature Medicine.

[47]  G. Yellen,et al.  Blocker State Dependence and Trapping in Hyperpolarization-Activated Cation Channels , 2001, The Journal of general physiology.

[48]  W. Giles,et al.  Cardiac Ion Channel Expression and Contractile Function in Mice with Deletion of Thyroid Hormone Receptor α or β1 , 2001 .

[49]  M. Larkum,et al.  High I(h) channel density in the distal apical dendrite of layer V pyramidal cells increases bidirectional attenuation of EPSPs. , 2001, Journal of neurophysiology.

[50]  W. Giles,et al.  Cardiac ion channel expression and contractile function in mice with deletion of thyroid hormone receptor alpha or beta. , 2001, Endocrinology.

[51]  U. Kaupp,et al.  Molecular diversity of pacemaker ion channels. , 2001, Annual review of physiology.

[52]  F. G. Pike,et al.  Distinct frequency preferences of different types of rat hippocampal neurones in response to oscillatory input currents , 2000, The Journal of physiology.

[53]  L. Kaczmarek,et al.  Cloning and localization of the hyperpolarization-activated cyclic nucleotide-gated channel family in rat brain. , 2000, Brain research. Molecular brain research.

[54]  H Honjo,et al.  The sinoatrial node, a heterogeneous pacemaker structure. , 2000, Cardiovascular research.

[55]  Y Shinagawa,et al.  Sustained inward current during pacemaker depolarization in mammalian sinoatrial node cells. , 2000, Circulation research.

[56]  S. Siegelbaum,et al.  Molecular and Functional Heterogeneity of Hyperpolarization-Activated Pacemaker Channels in the Mouse CNS , 2000, The Journal of Neuroscience.

[57]  B. Robertson,et al.  Hyperpolarization‐activated currents in presynaptic terminals of mouse cerebellar basket cells , 2000, The Journal of physiology.

[58]  M. Hasselmo,et al.  Properties and role of I(h) in the pacing of subthreshold oscillations in entorhinal cortex layer II neurons. , 2000, Journal of neurophysiology.

[59]  G. Stuart,et al.  Site independence of EPSP time course is mediated by dendritic I(h) in neocortical pyramidal neurons. , 2000, Journal of neurophysiology.

[60]  Jan-Marino Ramirez,et al.  The Role of the Hyperpolarization-Activated Current in Modulating Rhythmic Activity in the Isolated Respiratory Network of Mice , 2000, The Journal of Neuroscience.

[61]  R. Zucker,et al.  Enhancement of synaptic transmission by cyclic AMP modulation of presynaptic Ih channels , 2000, Nature Neuroscience.

[62]  J. Y. Wu,et al.  Epidermal growth factor increases i(f) in rabbit SA node cells by activating a tyrosine kinase. , 2000, Biochimica et biophysica acta.

[63]  G. Gensini,et al.  Long-term treatment of spontaneously hypertensive rats with losartan and electrophysiological remodeling of cardiac myocytes. , 2000, Cardiovascular research.

[64]  K. Ono,et al.  Inhibition by genistein of the hyperpolarization‐activated cation current in porcine sino‐atrial node cells , 1999, British journal of pharmacology.

[65]  P. Larsen,et al.  Thyroid hormone regulates hyperpolarization-activated cyclic nucleotide-gated channel (HCN2) mRNA in the rat heart. , 1999, Circulation research.

[66]  Jeffrey C. Magee Dendritic Ih normalizes temporal summation in hippocampal CA1 neurons , 1999, Nature Neuroscience.

[67]  P. Lichter,et al.  Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[68]  D. Mckinnon,et al.  Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues. , 1999, Circulation research.

[69]  M. Biel,et al.  Differential Distribution of Four Hyperpolarization-Activated Cation Channels in Mouse Brain , 1999, Biological chemistry.

[70]  David A. McCormick,et al.  Modulation of a pacemaker current through Ca2+-induced stimulation of cAMP production , 1999, Nature Neuroscience.

[71]  Jeffrey C. Magee,et al.  Dendritic I h normalizes temporal summation in hippocampal CA 1 neurons , 1999 .

[72]  Martin Biel,et al.  Two pacemaker channels from human heart with profoundly different activation kinetics , 1999, The EMBO journal.

[73]  A Mugelli,et al.  Influence of postnatal-development on I(f) occurrence and properties in neonatal rat ventricular myocytes. , 1999, Cardiovascular research.

[74]  Akinori Noma,et al.  Molecular Characterization of the Hyperpolarization-activated Cation Channel in Rabbit Heart Sinoatrial Node* , 1999, The Journal of Biological Chemistry.

[75]  M. Keating,et al.  MiRP1 Forms IKr Potassium Channels with HERG and Is Associated with Cardiac Arrhythmia , 1999, Cell.

[76]  B. Santoro,et al.  The HCN Gene Family: Molecular Basis of the Hyperpolarization‐Activated Pacemaker Channels , 1999, Annals of the New York Academy of Sciences.

[77]  Bruce P. Bean,et al.  Ionic Currents Underlying Spontaneous Action Potentials in Isolated Cerebellar Purkinje Neurons , 1999, The Journal of Neuroscience.

[78]  H. Breer,et al.  Identification of a cyclic nucleotide- and voltage-activated ion channel from insect antennae. , 1999, Insect biochemistry and molecular biology.

[79]  C. Chapman,et al.  Intrinsic theta-frequency membrane potential oscillations in hippocampal CA1 interneurons of stratum lacunosum-moleculare. , 1999, Journal of neurophysiology.

[80]  G. Tomaselli,et al.  A novel mechanism of anode-break stimulation predicted by bidomain modeling. , 1999, Circulation research.

[81]  M. Sanguinetti,et al.  Mutations of the S4‐S5 linker alter activation properties of HERG potassium channels expressed in Xenopus oocytes , 1999, The Journal of physiology.

[82]  S. Bisti,et al.  Temporal fidelity in the visual system. , 1999, Archives italiennes de biologie.

[83]  J. Magee Dendritic lh normalizes temporal summation in hippocampal CA1 neurons. , 1999, Nature neuroscience.

[84]  D. Beuckelmann,et al.  Modulation of the hyperpolarization-activated inward current (If) by antiarrhythmic agents in isolated human atrial myocytes , 1998, Naunyn-Schmiedeberg's Archives of Pharmacology.

[85]  J. Magee Dendritic Hyperpolarization-Activated Currents Modify the Integrative Properties of Hippocampal CA1 Pyramidal Neurons , 1998, The Journal of Neuroscience.

[86]  D. McCormick,et al.  H-Current Properties of a Neuronal and Network Pacemaker , 1998, Neuron.

[87]  U. Kaupp,et al.  Molecular identification of a hyperpolarization-activated channel in sea urchin sperm , 1998, Nature.

[88]  M. Biel,et al.  A family of hyperpolarization-activated mammalian cation channels , 1998, Nature.

[89]  D. Beuckelmann,et al.  Characterization of the hyperpolarization-activated inward current in isolated human atrial myocytes. , 1998, Cardiovascular research.

[90]  Eric R Kandel,et al.  Identification of a Gene Encoding a Hyperpolarization-Activated Pacemaker Channel of Brain , 1998, Cell.

[91]  N. Spruston,et al.  Determinants of Voltage Attenuation in Neocortical Pyramidal Neuron Dendrites , 1998, The Journal of Neuroscience.

[92]  Y. Goldman,et al.  Wag the Tail: Structural Dynamics of Actomyosin , 1998, Cell.

[93]  N. Thakor,et al.  Mechanism of anode break stimulation in the heart. , 1998, Biophysical journal.

[94]  L. S. Leung,et al.  Theta-frequency resonance in hippocampal CA1 neurons in vitro demonstrated by sinusoidal current injection. , 1998, Journal of neurophysiology.

[95]  J. Lenfant,et al.  Characterization of a hyperpolarization‐activated current in dedifferentiated adult rat ventricular cells in primary culture , 1998, The Journal of physiology.

[96]  López-García Jc Two different forms of long-term potentiation in the hippocampus. , 1998 .

[97]  E. Kandel,et al.  Interactive cloning with the SH3 domain of N-src identifies a new brain specific ion channel protein, with homology to eag and cyclic nucleotide-gated channels. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[98]  D. DiFrancesco,et al.  Action of the hyperpolarization-activated current (Ih) blocker ZD 7288 in hippocampal CA1 neurons , 1997, Pflügers Archiv.

[99]  F. Morrell,et al.  Alzheimer’s Disease: In Vivo Detection of Differential Vulnerability of Brain Regions , 1997, Neurobiology of Aging.

[100]  I. Cohen,et al.  Tyrosine kinase inhibition reduces if in rabbit sinoatrial node myocytes , 1997, Pflügers Archiv.

[101]  D. McCormick,et al.  Synchronized oscillations in the inferior olive are controlled by the hyperpolarization-activated cation current I(h). , 1997, Journal of neurophysiology.

[102]  E. Accili,et al.  Differential control of the hyperpolarization‐activated current (i(f)) by cAMP gating and phosphatase inhibition in rabbit sino‐atrial node myocytes. , 1997, The Journal of physiology.

[103]  D. Paterson,et al.  Nitric oxide can increase heart rate by stimulating the hyperpolarization-activated inward current, I(f). , 1997, Circulation research.

[104]  G Sani,et al.  Characterization of the hyperpolarization-activated current, I(f), in ventricular myocytes from human failing heart. , 1997, Circulation.

[105]  R. Robinson,et al.  Developmental change in the voltage-dependence of the pacemaker current, if, in rat ventricle cells , 1997, Pflügers Archiv.

[106]  D. McCormick,et al.  Sleep and arousal: thalamocortical mechanisms. , 1997, Annual review of neuroscience.

[107]  C. McBain,et al.  The hyperpolarization‐activated current (Ih) and its contribution to pacemaker activity in rat CA1 hippocampal stratum oriens‐alveus interneurones. , 1996, The Journal of physiology.

[108]  D. Terrar,et al.  Possible role of calcium release from the sarcoplasmic reticulum in pacemaking in guinea‐pig sino‐atrial node , 1996, Experimental physiology.

[109]  J. Lenfant,et al.  Mode of action of bradycardic agent, S 16257, on ionic currents of rabbit sinoatrial node cells , 1996, British journal of pharmacology.

[110]  D DiFrancesco,et al.  A TTX‐sensitive inward sodium current contributes to spontaneous activity in newborn rabbit sino‐atrial node cells. , 1996, The Journal of physiology.

[111]  R. Aldrich,et al.  Conversion of a Delayed Rectifier K+ Channel to a Voltage-Gated Inward Rectifier K+ Channel by Three Amino Acid Substitutions , 1996, Neuron.

[112]  D DiFrancesco,et al.  Basal responses of the L‐type Ca2+ and hyperpolarization‐activated currents to autonomic agonists in the rabbit sino‐atrial node. , 1996, The Journal of physiology.

[113]  W. Crill,et al.  Persistent sodium current in mammalian central neurons. , 1996, Annual review of physiology.

[114]  H. Pape,et al.  Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. , 1996, Annual review of physiology.

[115]  L. Puybasset,et al.  Coronary and hemodynamic effects of S 16257, a new bradycardic agent, in resting and exercising conscious dogs. , 1995, The Journal of pharmacology and experimental therapeutics.

[116]  M. Vassalle,et al.  The pacemaker current (I(f)) does not play an important role in regulating SA node pacemaker activity. , 1995, Cardiovascular research.

[117]  I. Cohen,et al.  Pacemaker current i(f) in adult canine cardiac ventricular myocytes. , 1995, The Journal of physiology.

[118]  A. Noma,et al.  A sustained inward current activated at the diastolic potential range in rabbit sino‐atrial node cells. , 1995, The Journal of physiology.

[119]  D. Paterson,et al.  Effects of High Potassium and the Bradycardic Agents ZD7288 and Cesium on Heart Rate of Rabbits and Guinea Pigs , 1995, Journal of cardiovascular pharmacology.

[120]  A Mugelli,et al.  Characterization of the hyperpolarization‐activated current, I(f), in ventricular myocytes isolated from hypertensive rats. , 1994, The Journal of physiology.

[121]  J. Prost,et al.  Electrophysiological effects of S 16257, a novel sino‐atrial node modulator, on rabbit and guinea‐pig cardiac preparations: comparison with UL‐FS 49 , 1994, British journal of pharmacology.

[122]  J. Bower,et al.  An active membrane model of the cerebellar Purkinje cell. I. Simulation of current clamps in slice. , 1994, Journal of neurophysiology.

[123]  A. Raes,et al.  Use‐Dependent Block of the Pacemaker Current If in Rabbit Sinoatrial Node Cells by Zatebradine (UL‐FS 49) On the Mode of Action of Sinus Node Inhibitors , 1993, Circulation.

[124]  C Blakemore,et al.  Modulation of EPSP shape and efficacy by intrinsic membrane conductances in rat neocortical pyramidal neurons in vitro. , 1993, The Journal of physiology.

[125]  D DiFrancesco,et al.  Pacemaker mechanisms in cardiac tissue. , 1993, Annual review of physiology.

[126]  H. Brown,et al.  Cardiac pacemaking in the sinoatrial node. , 1993, Physiological reviews.

[127]  I. Cohen,et al.  Pacemaker current exists in ventricular myocytes. , 1993, Circulation research.

[128]  H. Pape,et al.  Nitric oxide controls oscillatory activity in thalamocortical neurons , 1992, Neuron.

[129]  V. Chiappinelli,et al.  An inward rectifier is present in presynaptic nerve terminals in the chick ciliary ganglion , 1992, Brain Research.

[130]  H Kasanuki,et al.  Background current in sino‐atrial node cells of the rabbit heart. , 1992, The Journal of physiology.

[131]  M. Rosen,et al.  Effects of protein kinase inhibitors on canine Purkinje fibre pacemaker depolarization and the pacemaker current i(f). , 1991, The Journal of physiology.

[132]  Dario DiFrancesco,et al.  Direct activation of cardiac pacemaker channels by intracellular cyclic AMP , 1991, Nature.

[133]  E. Carmeliet,et al.  Ionic currents activated during hyperpolarization of single right atrial myocytes from cat heart. , 1991, Circulation research.

[134]  D. McCormick,et al.  Noradrenergic and serotonergic modulation of a hyperpolarization‐activated cation current in thalamic relay neurones. , 1990, The Journal of physiology.

[135]  R. Llinás,et al.  Subthreshold Na+-dependent theta-like rhythmicity in stellate cells of entorhinal cortex layer II , 1989, Nature.

[136]  David A. McCormick,et al.  Noradrenaline and serotonin selectively modulate thalamic burst firing by enhancing a hyperpolarization-activated cation current , 1989, Nature.

[137]  D DiFrancesco,et al.  Muscarinic modulation of cardiac rate at low acetylcholine concentrations. , 1989, Science.

[138]  萩原 誠久,et al.  Contribution of two types of calcium currents to the pacemaker potentials of rabbit sino-atrial node cells , 1989 .

[139]  G. Lynch,et al.  Stable hippocampal long-term potentiation elicited by ‘theta’ pattern stimulation , 1987, Brain Research.

[140]  S. Hestrin,et al.  The properties and function of inward rectification in rod photoreceptors of the tiger salamander. , 1987, The Journal of physiology.

[141]  Dario DiFrancesco,et al.  Characterization of single pacemaker channels in cardiac sino-atrial node cells , 1986, Nature.

[142]  M. Mazzanti,et al.  Properties of the hyperpolarizing‐activated current (if) in cells isolated from the rabbit sino‐atrial node. , 1986, The Journal of physiology.

[143]  W. Kobinger,et al.  Cardiovascular characterization of UL-FS 49, 1,3,4,5-tetrahydro-7,8-dimethoxy-3-[3-][2-(3,4-dimethoxyphenyl)ethyl] methylimino]propyl]-2H-3-benzazepin-2-on hydrochloride, a new "specific bradycardic agent". , 1984, European journal of pharmacology.

[144]  Paul R. Adams,et al.  Voltage-clamp analysis of muscarinic excitation in hippocampal neurons , 1982, Brain Research.

[145]  D DiFrancesco,et al.  A new interpretation of the pace‐maker current in calf Purkinje fibres. , 1981, The Journal of physiology.

[146]  D DiFrancesco,et al.  A study of the ionic nature of the pace‐maker current in calf Purkinje fibres. , 1981, The Journal of physiology.

[147]  D. Attwell,et al.  Behaviour of the rod network in the tiger salamander retina mediated by membrane properties of individual rods , 1980, The Journal of physiology.

[148]  H. Brown,et al.  Voltage‐clamp investigations of membrane currents underlying pace‐maker activity in rabbit sino‐atrial node. , 1980, The Journal of physiology.

[149]  E. A. Schwartz,et al.  A voltage‐clamp study of the light response in solitary rods of the tiger salamander. , 1979, The Journal of physiology.

[150]  H. Brown,et al.  How does adrenaline accelerate the heart? , 1979, Nature.