Molecular Imaging of Neuroblastoma Progression in TH-MYCN Transgenic Mice

[1]  E. Hoffman,et al.  Quantitation in Positron Emission Computed Tomography: 1. Effect of Object Size , 1979, Journal of computer assisted tomography.

[2]  M. Charron,et al.  Pinhole imaging of 131I-metaiodobenzylguanidine (131I-MIBG) in an animal model of neuroblastoma , 2003, Pediatric Radiology.

[3]  M. Osman,et al.  123I-MIBG Scintigraphy and 18F-FDG PET in Neuroblastoma , 2010, Journal of Nuclear Medicine.

[4]  M. Jackson,et al.  Histological profile of tumours from MYCN transgenic mice , 2008, Journal of Clinical Pathology.

[5]  D. Machin,et al.  Randomized Trial of prophylactic granulocyte colony-stimulating factor during rapid COJEC induction in pediatric patients with high-risk neuroblastoma: the European HR-NBL1/SIOPEN study. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[6]  J. Talbot,et al.  Improvement of semi-quantitative small-animal PET data with recovery coefficients: A phantom and rat study , 2007, Nuclear medicine communications.

[7]  P. Bartenstein,et al.  123I-MIBG scintigraphy/SPECT versus 18F-FDG PET in paediatric neuroblastoma , 2011, European Journal of Nuclear Medicine and Molecular Imaging.

[8]  Qing-Rong Chen,et al.  Global genomic and proteomic analysis identifies biological pathways related to high-risk neuroblastoma. , 2010, Journal of proteome research.

[9]  Sara M. Federico,et al.  Preclinical Models for Neuroblastoma: Establishing a Baseline for Treatment , 2011, PloS one.

[10]  C. Decristoforo,et al.  Functional imaging in phaeochromocytoma and neuroblastoma with 68Ga-DOTA-Tyr3-octreotide positron emission tomography and 123I-metaiodobenzylguanidine , 2010, European Journal of Nuclear Medicine and Molecular Imaging.

[11]  G. Brodeur Neuroblastoma: biological insights into a clinical enigma , 2003, Nature Reviews Cancer.

[12]  M. Gelfand,et al.  123I-MIBG Scintigraphy and 18F-FDG PET in Neuroblastoma , 2009, Journal of Nuclear Medicine.

[13]  Mario Marengo,et al.  Performance evaluation of a small animal PET scanner. Spatial resolution characterization using 18F and 11C , 2007 .

[14]  T. Godfrey,et al.  Genome-wide screen for allelic imbalance in a mouse model for neuroblastoma. , 2000, Cancer research.

[15]  S. Siegel,et al.  Performance evaluation of the microPET focus: a third-generation microPET scanner dedicated to animal imaging. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[16]  W. Weiss,et al.  Expression of N-myc and MRP genes and their relationship to N-myc gene dosage and tumor formation in a murine neuroblastoma model. , 2000, Medical and pediatric oncology.

[17]  C. Bucana,et al.  Inhibition of platelet-derived growth factor receptor phosphorylation by STI571 (Gleevec) reduces growth and metastasis of human pancreatic carcinoma in an orthotopic nude mouse model. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[18]  M. Gaze,et al.  18F-FDG PET/CT and 123I-Metaiodobenzylguanidine Imaging in High-Risk Neuroblastoma: Diagnostic Comparison and Survival Analysis , 2011, The Journal of Nuclear Medicine.

[19]  obert Howman-Giles,et al.  euroblastoma and Other Neuroendocrine Tumors , 2022 .

[20]  I. Buvat,et al.  Comparative Assessment of Methods for Estimating Tumor Volume and Standardized Uptake Value in 18F-FDG PET , 2010, Journal of Nuclear Medicine.

[21]  C. Rübe,et al.  Comparison of different methods for delineation of 18F-FDG PET-positive tissue for target volume definition in radiotherapy of patients with non-Small cell lung cancer. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[22]  J. Folkman,et al.  Malignant progression and blockade of angiogenesis in a murine transgenic model of neuroblastoma. , 2007, Cancer research.

[23]  B. Kushner,et al.  Neuroblastoma: a disease requiring a multitude of imaging studies. , 2004, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[24]  J. Maris,et al.  Combinatorial regulation of neuroblastoma tumor progression by N-Myc and hypoxia inducible factor HIF-1alpha. , 2010, Cancer research.

[25]  S. Alyafei,et al.  Tumour detectability in 2-dimensional and 3-dimensional positron emission tomography using the SET-2400W: a phantom study , 2001, Nuclear medicine communications.

[26]  A. Peaston,et al.  Mechanisms of embryonal tumor initiation: distinct roles for MycN expression and MYCN amplification. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Maris Recent advances in neuroblastoma. , 2010, The New England journal of medicine.

[28]  Michael E. Phelps,et al.  Quantitation in Positron Emission Computed Tomography , 1980 .

[29]  C. Decristoforo,et al.  Functional imaging in phaeochromocytoma and neuroblastoma with 68Ga-DOTA-Tyr3-octreotide positron emission tomography and 123I-metaiodobenzylguanidine: a clarification , 2011, European Journal of Nuclear Medicine and Molecular Imaging.

[30]  R. Stallings,et al.  miRNA Expression Profiling of the Murine TH-MYCN Neuroblastoma Model Reveals Similarities with Human Tumors and Identifies Novel Candidate MiRNAs , 2011, PloS one.

[31]  C. Nanni,et al.  Comparison of 18F-dopa PET/CT and 123I-MIBG scintigraphy in stage 3 and 4 neuroblastoma: a pilot study , 2011, European Journal of Nuclear Medicine and Molecular Imaging.

[32]  G. Mohapatra,et al.  Targeted expression of MYCN causes neuroblastoma in transgenic mice , 1997, The EMBO journal.

[33]  Jingli Wang,et al.  Positron Emission Tomography: applications in drug discovery and drug development. , 2005, Current topics in medicinal chemistry.

[34]  C. Franzius FDG-PET/CT in pediatric solid tumors. , 2010, The quarterly journal of nuclear medicine and molecular imaging : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the Society of....

[35]  Ajay N. Jain,et al.  Genome-wide array CGH analysis of murine neuroblastoma reveals distinct genomic aberrations which parallel those in human tumors. , 2003, Cancer research.