Topological Quantum Compiling with Reinforcement Learning

Quantum compiling, a process that decomposes the quantum algorithm into a series of hardware-compatible commands or elementary gates, is of fundamental importance for quantum computing. We introduce an efficient algorithm based on deep reinforcement learning that compiles an arbitrary single-qubit gate into a sequence of elementary gates from a finite universal set. It generates near-optimal gate sequences with given accuracy and is generally applicable to various scenarios, independent of the hardware-feasible universal set and free from using ancillary qubits. For concreteness, we apply this algorithm to the case of topological compiling of Fibonacci anyons and obtain near-optimal braiding sequences for arbitrary single-qubit unitaries. Our algorithm may carry over to other challenging quantum discrete problems, thus opening up a new avenue for intriguing applications of deep learning in quantum physics.

[1]  Ian R. Petersen,et al.  Quantum control theory and applications: A survey , 2009, IET Control Theory & Applications.

[2]  R. Melko,et al.  Machine Learning Phases of Strongly Correlated Fermions , 2016, Physical Review X.

[3]  K. West,et al.  Electron correlation in the second Landau level: a competition between many nearly degenerate quantum phases. , 2004, Physical Review Letters.

[4]  Michael Larsen,et al.  A Modular Functor Which is Universal¶for Quantum Computation , 2000, quant-ph/0001108.

[5]  J. Cirac,et al.  Optimal creation of entanglement using a two-qubit gate , 2000, quant-ph/0011050.

[6]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[7]  L. Landau Fault-tolerant quantum computation by anyons , 2003 .

[8]  Rodney Van Meter,et al.  Optimization of the Solovay-Kitaev algorithm , 2012, 1209.4139.

[9]  Matthias Troyer,et al.  Neural-network quantum state tomography , 2018 .

[10]  Tomas Rokicki,et al.  The Diameter of the Rubik's Cube Group Is Twenty , 2013, SIAM Rev..

[11]  Michele Mosca,et al.  An algorithm for the T-count , 2013, Quantum Inf. Comput..

[12]  M. Sohaib Alam Quantum Logic Gate Synthesis as a Markov Decision Process , 2019, ArXiv.

[13]  N. Bonesteel,et al.  Systematically generated two-qubit anyon braids , 2015, 1511.00719.

[14]  E. Fradkin,et al.  Realizing non-Abelian statistics in time-reversal-invariant systems , 2005 .

[15]  Michael H. Freedman,et al.  Universal Geometric Path to a Robust Majorana Magic Gate , 2015, 1511.05161.

[16]  Dong-Ling Deng,et al.  Machine Learning Detection of Bell Nonlocality in Quantum Many-Body Systems. , 2017, Physical review letters.

[17]  Alex Bocharov,et al.  Resource-optimal single-qubit quantum circuits. , 2012, Physical review letters.

[18]  Neil J. Ross,et al.  Optimal ancilla-free Clifford+T approximation of z-rotations , 2014, Quantum Inf. Comput..

[19]  S. Simon,et al.  Topological quantum compiling , 2006, quant-ph/0610111.

[20]  Dmitri Maslov,et al.  Asymptotically optimal approximation of single qubit unitaries by Clifford and T circuits using a constant number of ancillary qubits , 2012, Physical review letters.

[21]  Giuseppe Mussardo,et al.  Topological quantum hashing with the icosahedral group. , 2010, Physical review letters.

[22]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[23]  Du Q. Huynh,et al.  Metrics for 3D Rotations: Comparison and Analysis , 2009, Journal of Mathematical Imaging and Vision.

[24]  Juan Carrasquilla,et al.  Machine learning quantum phases of matter beyond the fermion sign problem , 2016, Scientific Reports.

[25]  Sebastian Johann Wetzel,et al.  Unsupervised learning of phase transitions: from principal component analysis to variational autoencoders , 2017, Physical review. E.

[26]  Yi Zhang,et al.  Machine learning Z 2 quantum spin liquids with quasiparticle statistics , 2017, 1705.01947.

[27]  Michael I. Jordan,et al.  Machine learning: Trends, perspectives, and prospects , 2015, Science.

[28]  Austin G. Fowler Constructing arbitrary Steane code single logical qubit fault-tolerant gates , 2011, Quantum Inf. Comput..

[29]  Demis Hassabis,et al.  Mastering the game of Go with deep neural networks and tree search , 2016, Nature.

[30]  M. Puterman,et al.  Modified Policy Iteration Algorithms for Discounted Markov Decision Problems , 1978 .

[31]  Lu-Ming Duan,et al.  Machine learning meets quantum physics , 2019, Physics Today.

[32]  Matthias Troyer,et al.  Solving the quantum many-body problem with artificial neural networks , 2016, Science.

[33]  S. Huber,et al.  Learning phase transitions by confusion , 2016, Nature Physics.

[34]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[35]  F. Nori,et al.  Quantum Simulation , 2013, Quantum Atom Optics.

[36]  Y. Gurevich,et al.  Efficient decomposition of single-qubit gates intoVbasis circuits , 2013, 1303.1411.

[37]  Kevin Walker,et al.  A class of P,T-invariant topological phases of interacting electrons , 2003, cond-mat/0307511.

[38]  John Preskill,et al.  Quantum Computing in the NISQ era and beyond , 2018, Quantum.

[39]  Peter Selinger,et al.  Quantum circuits of T-depth one , 2012, ArXiv.

[40]  S. Simon,et al.  Braid topologies for quantum computation. , 2005, Physical review letters.

[41]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[42]  S. Simon,et al.  Non-Abelian Anyons and Topological Quantum Computation , 2007, 0707.1889.

[43]  A. Mandilara,et al.  Quantum compiling with diffusive sets of gates , 2017, Physical Review A.

[44]  Ira Pohl,et al.  Heuristic Search Viewed as Path Finding in a Graph , 1970, Artif. Intell..

[45]  Shane Legg,et al.  Human-level control through deep reinforcement learning , 2015, Nature.

[46]  Naftali Tishby,et al.  Machine learning and the physical sciences , 2019, Reviews of Modern Physics.

[47]  Zhengyu Zhang,et al.  An efficient quantum algorithm for generative machine learning , 2017, ArXiv.

[48]  Roger G. Melko,et al.  Machine learning phases of matter , 2016, Nature Physics.

[49]  Xin Wan,et al.  Constructing functional braids for low-leakage topological quantum computing , 2008, 0802.4213.

[50]  Yi Zhang,et al.  Quantum Loop Topography for Machine Learning. , 2016, Physical review letters.

[51]  Earl T. Campbell,et al.  An efficient quantum compiler that reduces T count , 2017, Quantum Science and Technology.

[52]  N R Cooper,et al.  Quantum phases of vortices in rotating Bose-Einstein condensates. , 2001, Physical review letters.

[53]  Krysta Marie Svore,et al.  Asymptotically Optimal Topological Quantum Compiling , 2013, Physical review letters.

[54]  Pierre Baldi,et al.  Solving the Rubik’s cube with deep reinforcement learning and search , 2019, Nature Machine Intelligence.

[55]  Roger G. Melko,et al.  Reconstructing quantum states with generative models , 2018, Nature Machine Intelligence.

[56]  Li He,et al.  Machine Learning Topological Phases with a Solid-State Quantum Simulator. , 2019, Physical review letters.

[57]  Alexei Kitaev,et al.  Anyons in an exactly solved model and beyond , 2005, cond-mat/0506438.

[58]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[59]  Wenjian Hu,et al.  Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination. , 2017, Physical review. E.

[60]  Hans-J. Briegel,et al.  Machine learning \& artificial intelligence in the quantum domain , 2017, ArXiv.

[61]  Michael A. Nielsen,et al.  The Solovay-Kitaev algorithm , 2006, Quantum Inf. Comput..

[62]  Lei Wang,et al.  Discovering phase transitions with unsupervised learning , 2016, 1606.00318.

[63]  Yi Zhang,et al.  Machine learning in electronic-quantum-matter imaging experiments , 2018, Nature.

[64]  Ievgeniia Oshurko Quantum Machine Learning , 2020, Quantum Computing.

[65]  Andrew L. Maas Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .

[66]  Alán Aspuru-Guzik,et al.  Faster quantum chemistry simulation on fault-tolerant quantum computers , 2012 .

[67]  M. Freedman,et al.  Majorana zero modes and topological quantum computation , 2015, npj Quantum Information.

[68]  Colin P. Williams,et al.  Optimal quantum circuits for general two-qubit gates (5 pages) , 2003, quant-ph/0308006.