Semi-supervised orthogonal discriminant analysis via label propagation

[1]  Xiaojin Zhu,et al.  Semi-Supervised Learning , 2010, Encyclopedia of Machine Learning.

[2]  Matthias Seeger,et al.  Learning from Labeled and Unlabeled Data , 2010, Encyclopedia of Machine Learning.

[3]  Shinichi Nakajima,et al.  Semi-supervised local Fisher discriminant analysis for dimensionality reduction , 2009, Machine Learning.

[4]  Hongdong Li,et al.  Supervised dimensionality reduction via sequential semidefinite programming , 2008, Pattern Recognit..

[5]  Dit-Yan Yeung,et al.  Semi-supervised discriminant analysis via CCCP , 2008 .

[6]  Feiping Nie,et al.  A unified framework for semi-supervised dimensionality reduction , 2008, Pattern Recognit..

[7]  Feiping Nie,et al.  Trace Ratio Criterion for Feature Selection , 2008, AAAI.

[8]  Dit-Yan Yeung,et al.  Semi-Supervised Discriminant Analysis using robust path-based similarity , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[9]  Haixian Wang,et al.  Locality-Preserved Maximum Information Projection , 2008, IEEE Transactions on Neural Networks.

[10]  Jiawei Han,et al.  Semi-supervised Discriminant Analysis , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[11]  Yousef Saad,et al.  Orthogonal Neighborhood Preserving Projections: A Projection-Based Dimensionality Reduction Technique , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Lu Wang,et al.  Orthogonal Neighborhood Preserving Embedding for Face Recognition , 2007, 2007 IEEE International Conference on Image Processing.

[13]  Dong Xu,et al.  Trace Ratio vs. Ratio Trace for Dimensionality Reduction , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Feiping Nie,et al.  Neighborhood MinMax Projections , 2007, IJCAI.

[15]  Stephen Lin,et al.  Graph Embedding and Extensions: A General Framework for Dimensionality Reduction , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  Daoqiang Zhang,et al.  Semi-Supervised Dimensionality Reduction ∗ , 2007 .

[17]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[18]  Jiawei Han,et al.  Orthogonal Laplacianfaces for Face Recognition , 2006, IEEE Transactions on Image Processing.

[19]  Alexander Zien,et al.  Semi-Supervised Learning , 2006 .

[20]  Chris H. Q. Ding,et al.  Orthogonal nonnegative matrix t-factorizations for clustering , 2006, KDD '06.

[21]  Shuicheng Yan,et al.  Trace Quotient Problems Revisited , 2006, ECCV.

[22]  Jieping Ye,et al.  Characterization of a Family of Algorithms for Generalized Discriminant Analysis on Undersampled Problems , 2005, J. Mach. Learn. Res..

[23]  Deng Cai,et al.  Orthogonal locality preserving indexing , 2005, SIGIR '05.

[24]  Wei-Ying Ma,et al.  OCFS: optimal orthogonal centroid feature selection for text categorization , 2005, SIGIR '05.

[25]  Anthony Widjaja,et al.  Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond , 2003, IEEE Transactions on Neural Networks.

[26]  Alexander Zien,et al.  Semi-Supervised Classification by Low Density Separation , 2005, AISTATS.

[27]  Shang-Hua Teng,et al.  Nearly-linear time algorithms for graph partitioning, graph sparsification, and solving linear systems , 2003, STOC '04.

[28]  Nicolas Le Roux,et al.  Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering , 2003, NIPS.

[29]  Bernhard Schölkopf,et al.  Learning with Local and Global Consistency , 2003, NIPS.

[30]  Zoubin Ghahramani,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.

[31]  J. B. Rosen,et al.  Lower Dimensional Representation of Text Data Based on Centroids and Least Squares , 2003 .

[32]  Alexander J. Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[33]  Fabrizio Sebastiani,et al.  Machine learning in automated text categorization , 2001, CSUR.

[34]  Avrim Blum,et al.  Learning from Labeled and Unlabeled Data using Graph Mincuts , 2001, ICML.

[35]  Tommi S. Jaakkola,et al.  Partially labeled classification with Markov random walks , 2001, NIPS.

[36]  Jing-Yu Yang,et al.  Face recognition based on the uncorrelated discriminant transformation , 2001, Pattern Recognit..

[37]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[38]  Vicki Bruce,et al.  Face Recognition: From Theory to Applications , 1999 .

[39]  D. B. Graham,et al.  Characterising Virtual Eigensignatures for General Purpose Face Recognition , 1998 .

[40]  Vladimir Cherkassky,et al.  The Nature Of Statistical Learning Theory , 1997, IEEE Trans. Neural Networks.

[41]  Sameer A. Nene,et al.  Columbia Object Image Library (COIL100) , 1996 .

[42]  L. Duchene,et al.  An Optimal Transformation for Discriminant and Principal Component Analysis , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.