Variants of the CMRH method for solving multi-shifted non-Hermitian linear systems

Multi-shifted linear systems with non-Hermitian coefficient matrices arise in numerical solutions of time-dependent partial/fractional differential equations (PDEs/FDEs), in control theory, PageRank problems, and other research fields. We derive efficient variants of the restarted Changing Minimal Residual method based on the cost-effective Hessenberg procedure (CMRH) for this problem class. Then, we introduce a flexible variant of the algorithm that allows to use variable preconditioning at each iteration to further accelerate the convergence of shifted CMRH. We analyse the performance of the new class of methods in the numerical solution of PDEs and FDEs, also against other multi-shifted Krylov subspace methods.

[1]  Gui-Ding Gu,et al.  Restarted GMRES augmented with harmonic Ritz vectors for shifted linear systems , 2005, Int. J. Comput. Math..

[2]  Simon Heybrock,et al.  Short-recurrence Krylov subspace methods for the overlap Dirac operator at nonzero chemical potential , 2009, Comput. Phys. Commun..

[3]  Lei Du,et al.  IDR(s) for solving shifted nonsymmetric linear systems , 2015, J. Comput. Appl. Math..

[4]  Lei Du,et al.  Restarted Hessenberg method for solving shifted nonsymmetric linear systems , 2015, J. Comput. Appl. Math..

[5]  Ting-Zhu Huang,et al.  BiCR-type methods for families of shifted linear systems , 2014, Comput. Math. Appl..

[6]  Vladimir Druskin,et al.  Solution of Large Scale Evolutionary Problems Using Rational Krylov Subspaces with Optimized Shifts , 2009, SIAM J. Sci. Comput..

[7]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[8]  Peter K. Kitanidis,et al.  A Flexible Krylov Solver for Shifted Systems with Application to Oscillatory Hydraulic Tomography , 2012, SIAM J. Sci. Comput..

[9]  知広 曽我部 Extensions of the conjugate residual method , 2006 .

[10]  Gerard L. G. Sleijpen,et al.  Flexible and multi-shift induced dimension reduction algorithms for solving large sparse linear systems , 2011 .

[11]  Eric de Sturler,et al.  Recycling BiCGSTAB with an Application to Parametric Model Order Reduction , 2014, SIAM J. Sci. Comput..

[12]  B. Jegerlehner Krylov space solvers for shifted linear systems , 1996, hep-lat/9612014.

[13]  Valeria Simoncini,et al.  The effect of non-optimal bases on the convergence of Krylov subspace methods , 2005, Numerische Mathematik.

[14]  T. Sogabe,et al.  A Numerical Method for Calculating the Green's Function Arising from Electronic Structure Theory , 2007 .

[15]  Lloyd N. Trefethen,et al.  Parabolic and hyperbolic contours for computing the Bromwich integral , 2007, Math. Comput..

[16]  Hassane Sadok,et al.  CMRH: A new method for solving nonsymmetric linear systems based on the Hessenberg reduction algorithm , 1999, Numerical Algorithms.

[17]  Hassane Sadok,et al.  A new look at CMRH and its relation to GMRES , 2012 .

[19]  Gérard Meurant,et al.  On the convergence of Q-OR and Q-MR Krylov methods for solving nonsymmetric linear systems , 2016 .

[20]  Kirk M. Soodhalter Two recursive GMRES-type methods for shifted linear systems with general preconditioning , 2014, ArXiv.

[21]  V. Simoncini Restarted Full Orthogonalization Method for Shifted Linear Systems , 2003 .

[22]  Martin B. van Gijzen,et al.  Nested Krylov Methods for Shifted Linear Systems , 2014, SIAM J. Sci. Comput..

[23]  A. Ostermann,et al.  Comparison of software for computing the action of the matrix exponential , 2014 .

[24]  Hassane Sadok,et al.  Algorithms for the CMRH method for dense linear systems , 2015, Numerical Algorithms.

[25]  Martin B. van Gijzen,et al.  Convergence and complexity study of GMRES variants for solving multi-frequency elastic wave propagation problems , 2018, J. Comput. Sci..

[26]  Hassane Sadok,et al.  A new implementation of the CMRH method for solving dense linear systems , 2008 .

[27]  Ting-Zhu Huang,et al.  Computers and Mathematics with Applications Restarted Weighted Full Orthogonalization Method for Shifted Linear Systems , 2022 .

[28]  J. H. Wilkinson The algebraic eigenvalue problem , 1966 .

[29]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[30]  Shuying Zhai,et al.  A novel high-order ADI method for 3D fractionalconvection–diffusion equations ☆ ☆☆ , 2015 .

[31]  Ting-Zhu Huang,et al.  A simpler GMRES and its adaptive variant for shifted linear systems , 2017, Numer. Linear Algebra Appl..

[32]  Martin B. van Gijzen,et al.  Preconditioned Multishift BiCG for ℋ2-Optimal Model Reduction , 2017, SIAM J. Matrix Anal. Appl..

[33]  L. Trefethen,et al.  Talbot quadratures and rational approximations , 2006 .

[34]  Andreas Frommer,et al.  BiCGStab(ℓ) for Families of Shifted Linear Systems , 2003, Computing.

[35]  Y. Saad,et al.  Arnoldi methods for large Sylvester-like observer matrix equations, and an associated algorithm for partial spectrum assignment , 1991 .

[36]  Roberto Garrappa,et al.  On the use of matrix functions for fractional partial differential equations , 2011, Math. Comput. Simul..

[37]  I. Podlubny Fractional differential equations , 1998 .

[38]  Chuanqing Gu,et al.  A flexible CMRH algorithm for nonsymmetric linear systems , 2014 .

[39]  Andreas Frommer,et al.  Restarted GMRES for Shifted Linear Systems , 1998, SIAM J. Sci. Comput..

[40]  Mehdi Dehghan,et al.  Generalized product-type methods based on bi-conjugate gradient (GPBiCG) for solving shifted linear systems , 2017 .

[41]  Lloyd N. Trefethen,et al.  The Exponentially Convergent Trapezoidal Rule , 2014, SIAM Rev..

[42]  Timothy A. Davis,et al.  The university of Florida sparse matrix collection , 2011, TOMS.

[43]  Gang Wu,et al.  A Preconditioned and Shifted GMRES Algorithm for the PageRank Problem with Multiple Damping Factors , 2012, SIAM J. Sci. Comput..

[44]  T. Sakurai,et al.  A projection method for generalized eigenvalue problems using numerical integration , 2003 .

[45]  Yousef Saad,et al.  A Flexible Inner-Outer Preconditioned GMRES Algorithm , 1993, SIAM J. Sci. Comput..

[46]  Jun-Feng Yin and Guo-Jian Yin Restarted Full Orthogonalization Method with Deflation for Shifted Linear Systems , 2014 .

[47]  Fei Xue,et al.  Krylov Subspace Recycling for Sequences of Shifted Linear Systems , 2013, ArXiv.

[48]  Lei,et al.  A FLEXIBLE PRECONDITIONED ARNOLDI METHOD FOR SHIFTED LINEAR SYSTEMS , 2007 .

[49]  Mohammed Heyouni Méthode de Hessenberg généralisée et applications , 1996 .

[50]  R. Morgan,et al.  Deflated GMRES for systems with multiple shifts and multiple right-hand sides☆ , 2007, 0707.0502.

[51]  Valeria Simoncini,et al.  Flexible Inner-Outer Krylov Subspace Methods , 2002, SIAM J. Numer. Anal..