A Convex Approach to Analysis, State and Output Feedback Control Parabolic PDEs Using Sum-of-Squares

In this paper we use optimization-based methods to analyze the stability and design state and output-feedback controllers for a class of one-dimensional parabolic partial differential equations. The output may be the complete state measurement or the boundary measurement of the state. The input considered is Neumann boundary actuation. We use Lyapunov operators, duality, and the Luenberger observer framework to reformulate the synthesis problem as a convex optimization problem expressed as a set of Linear-Operator-Inequalities (LOIs). We then show how feasibility of these LOIs may be tested using Semidefinite Programming (SDP) and the Sum-of-Squares methodology. Moreover, we provide numerical results which prove that the method can be generalized for application to systems with other types of boundary conditions.

[1]  Martin Weiss,et al.  Optimal control of stable weakly regular linear systems , 1997, Math. Control. Signals Syst..

[2]  David L. Russel Representation and Control of Infinite Dimensional Systems, Vols. 1 and 2 (A. Bensonssan, G. Da Prato, M. Delfour, and S. Mitter) , 1995, SIAM Rev..

[3]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[4]  Miroslav Krstic,et al.  Adaptive Boundary Control for Unstable Parabolic PDEs—Part I: Lyapunov Design , 2008, IEEE Transactions on Automatic Control.

[5]  Bert van Keulen,et al.  H? Control for Distributed Parameter Systems: A State-Space Approach , 2012 .

[6]  Christophe Prieur,et al.  A Strict Control Lyapunov Function for a Diffusion Equation With Time-Varying Distributed Coefficients , 2013, IEEE Transactions on Automatic Control.

[7]  Matthew M. Peet LMI parametrization of Lyapunov functions for infinite-dimensional systems: A framework , 2014, 2014 American Control Conference.

[8]  Emilia Fridman,et al.  An LMI approach to Hinfinity boundary control of semilinear parabolic and hyperbolic systems , 2009, Autom..

[9]  Christopher I. Byrnes,et al.  Example of output regulation for a system with unbounded inputs and outputs , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[10]  Olof J. Staffans,et al.  Quadratic optimal control of well-posed linear systems , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[11]  Wolfgang Hahn,et al.  Stability of Motion , 1967 .

[12]  Didier Henrion,et al.  GloptiPoly: Global optimization over polynomials with Matlab and SeDuMi , 2003, TOMS.

[13]  Miroslav Krstic,et al.  Lyapunov Adaptive Boundary Control for Parabolic PDEs with Spatially Varying Coefficients , 2006, 2006 American Control Conference.

[14]  Miroslav Krstic,et al.  Stability of partial difference equations governing control gains in infinite-dimensional backstepping , 2004, Syst. Control. Lett..

[15]  Georges Bastin,et al.  Dissipative Boundary Conditions for One-Dimensional Nonlinear Hyperbolic Systems , 2008, SIAM J. Control. Optim..

[16]  R. Nagel,et al.  Basic results on semigroups on banach spaces , 1986 .

[17]  Kirsten Morris,et al.  Approximation of low rank solutions for linear quadratic control of partial differential equations , 2010, Comput. Optim. Appl..

[18]  Y. Egorov,et al.  On Spectral Theory of Elliptic Operators , 1996 .

[19]  Georges Bastin,et al.  A Strict Lyapunov Function for Boundary Control of Hyperbolic Systems of Conservation Laws , 2007, IEEE Transactions on Automatic Control.

[20]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[21]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[22]  Ruth F. Curtain,et al.  Well posedness of triples of operators (in the sense of linear systems theory) , 1989 .

[23]  Denis Dochain,et al.  Sturm-Liouville systems are Riesz-spectral systems , 2003 .

[24]  M. G. Kreïn Stability of solutions of differential equations in Banach space , 2007 .

[25]  Brigitte d'Andréa-Novel,et al.  Stabilization of a rotating body beam without damping , 1998, IEEE Trans. Autom. Control..

[26]  R. Datko Extending a theorem of A. M. Liapunov to Hilbert space , 1970 .

[27]  Israel Gohberg,et al.  Time varying linear systems with boundary conditions and integral operators. I. The transfer operator and its properties , 1984 .

[28]  Ruth F. Curtain,et al.  Exponential stabilization of well-posed systems by colocated feedback , 2006, SIAM J. Control. Optim..

[29]  A. Vicino,et al.  On convexification of some minimum distance problems , 1999, 1999 European Control Conference (ECC).

[30]  R. Triggiani,et al.  Control and Stabilization of Distributed Parameter Systems; Theoretical and Computational Aspects , 1994 .

[31]  Miroslav Krstic,et al.  Adaptive boundary control for unstable parabolic PDEs - Part II: Estimation-based designs , 2007, Autom..

[32]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[33]  George Weiss,et al.  Admissible observation operators for linear semigroups , 1989 .

[34]  E. Joffrin,et al.  A control-oriented model of the current profile in tokamak plasma , 2007 .

[35]  A. Papachristodoulou,et al.  On the Analysis of Systems Described by Classes of Partial Differential Equations , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[36]  George Weiss,et al.  Transfer Functions of Regular Linear Systems. Part I: Characterizations of Regularity , 1994 .

[37]  Pablo A. Parrilo,et al.  Introducing SOSTOOLS: a general purpose sum of squares programming solver , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[38]  Lenore Blum,et al.  Complexity and Real Computation , 1997, Springer New York.

[39]  J. Hale Functional Differential Equations , 1971 .

[40]  A. Bergen,et al.  Lyapunov stability and Lyapunov functions of infinite dimensional systems , 1969 .

[41]  Ulrich Eggers,et al.  Introduction To Infinite Dimensional Linear Systems Theory , 2016 .

[42]  V. Powers,et al.  An algorithm for sums of squares of real polynomials , 1998 .

[43]  R. Triggiani,et al.  Control Theory for Partial Differential Equations: Continuous and Approximation Theories , 2000 .

[44]  A. Fuller,et al.  Stability of Motion , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[45]  M. Krstić Boundary Control of PDEs: A Course on Backstepping Designs , 2008 .

[46]  George Weiss,et al.  The representation of regular linear systems on Hilbert spaces , 1989 .

[47]  G. Dullerud,et al.  A Course in Robust Control Theory: A Convex Approach , 2005 .

[48]  Emilia Fridman,et al.  An LMI approach toH∞ boundary control of semilinear parabolic and hyperbolic systems , 2009 .

[49]  M. Kreĭn,et al.  Stability of Solutions of Differential Equations in Banach Spaces , 1974 .

[50]  Kazuo Tanaka,et al.  A Sum-of-Squares Approach to Modeling and Control of Nonlinear Dynamical Systems With Polynomial Fuzzy Systems , 2009, IEEE Transactions on Fuzzy Systems.

[51]  Miroslav Krstic,et al.  Adaptive boundary control for unstable parabolic PDEs - Part III: Output feedback examples with swapping identifiers , 2007, Autom..

[52]  Antonis Papachristodoulou,et al.  Using polynomial semi-separable kernels to construct infinite-dimensional Lyapunov functions , 2008, 2008 47th IEEE Conference on Decision and Control.

[53]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[54]  N. Rashevsky,et al.  Mathematical biology , 1961, Connecticut medicine.

[55]  R. Jackson Inequalities , 2007, Algebra for Parents.

[56]  K. A. Morrisy Design of Finite-dimensional Controllers for Innnite-dimensional Systems by Approximation , 1994 .

[57]  A. Papachristodoulou,et al.  Constructing Lyapunov-Krasovskii functionals for linear time delay systems , 2005, Proceedings of the 2005, American Control Conference, 2005..

[58]  O. Staffans Quadratic optimal control of stable well-posed linear systems , 1997 .

[59]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.