Actively Q-switched fiber lasers: Switching dynamics and nonlinear processes

The Q-switching characteristics of actively Q-switched fiber lasers, especially the inconsistency of experimental observations with traditional Q-switching theory, are reviewed first in this paper. Based on a few typical high-power Q-switched rare-earth-doped fiber lasers, the switching dynamics in the linear and ring fiber cavities is then systematically illustrated under different fiber, pumping and switching conditions by using the traveling wave method, which leads to a new understanding of Q-switched fiber lasers. In particular, the switching-induced perturbation and its influence on the Q-switched outputs are emphasized, and some experimental demonstrations are shown for the purpose of comparison. Nonlinearity is an important concern in these lasers due to the high-power optical pulses confined in small fiber cores. In the second part of this paper, some nonlinear effects, such as self-phase modulation (SPM), four-wave mixing (FWM), stimulated Raman scattering (SRS) and stimulated Brillouin scattering (SBS), in Q-switched fiber lasers are discussed. In particular, their temporal and spectral influences on the Q-switched outputs are analyzed experimentally and theoretically. These theoretical analyses and experimental demonstrations provide a complete picture of the switching dynamics and optical nonlinear processes in Q-switched fiber lasers, and are hence important for laser optimization and control.

[1]  Trevor P. Newson,et al.  Narrow linewidth, Q-switched erbium doped fibre laser , 1996 .

[2]  Yong Wang,et al.  Pulse evolution of a Q-switched ytterbium-doped double-clad fiber laser , 2003 .

[3]  J. Chrostowski,et al.  High-power Q-switched erbium-doped fiber laser , 1991 .

[4]  Yong Wang,et al.  Experimental study of stimulated Brillouin and Raman scatterings in a Q-switched cladding-pumped fiber laser , 2004 .

[5]  John W. Arkwright,et al.  An investigation of Q-switched induced quenching of the resonant nonlinearity in neodymium doped fibers , 1996 .

[6]  C. Nam,et al.  Generation of passively Q-switched and modelocked pulse from Nd:YVO4 laser with Cr4+:YAG saturable absorber , 2000 .

[7]  M. Söderlund,et al.  Measuring photodarkening from single-mode ytterbium doped silica fibers. , 2006, Optics express.

[8]  Ammar Hideur,et al.  Evidence of Brillouin scattering in an ytterbium-doped double-clad fiber laser. , 2002, Optics letters.

[9]  Yong Wang,et al.  Analysis of a Q-switched ytterbium-doped double-clad fiber laser with simultaneous mode locking , 2003 .

[10]  Boyd,et al.  Stochastic dynamics of stimulated Brillouin scattering in an optical fiber. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[11]  Y. Jaouen,et al.  Multiple-Stokes stimulated Brillouin scattering generation in pulsed high-power double-cladding Er/sup 3+/-Yb/sup 3+/-codoped fiber amplifier , 2003, IEEE Photonics Technology Letters.

[12]  Govind P. Agrawal,et al.  Nonlinear Fiber Optics , 1989 .

[13]  Yuan Shi,et al.  High Repetition Rate Q-Switched Ring Laser in Er3+-Doped Fiber , 1995 .

[14]  P. Myslinski,et al.  Q-switched thulium-doped fiber laser , 1993 .

[15]  J. Bromage,et al.  A method to predict the Raman gain spectra of germanosilicate fibers with arbitrary index profiles , 2002, IEEE Photonics Technology Letters.

[16]  David J. Richardson,et al.  Diode pumped, high energy, single transverse mode Q-switch fibre laser , 1997 .

[17]  C. C. Cutler,et al.  Why does linear phase shift cause mode locking , 1992 .

[18]  L. Goldberg,et al.  Single-mode operation of a coiled multimode fiber amplifier. , 2000, Optics letters.

[19]  A. Tuennermann,et al.  Q-switching of Yb3+-doped fiber laser using a novel micro-optical waveguide on microactuating platform light modulator. , 2005, Optics express.

[20]  Anne C. Tropper,et al.  Q-switched operation of a neodymium-doped monomode fibre laser , 1986 .

[21]  David J. Richardson,et al.  Characteristics of Q-switched cladding-pumped ytterbium-doped fiber lasers with different high-energy fiber designs , 2001 .

[22]  B Jaskorzynska,et al.  Modeling and optimization of low-repetition-rate high-energy pulse amplification in cw-pumped erbium-doped fiber amplifiers. , 1993, Optics letters.

[23]  M. Kavehrad,et al.  Analytical model for rare-earth-doped fiber amplifiers and lasers , 1994 .

[24]  Yong Wang,et al.  Thermal effects in kilowatt fiber lasers , 2004 .

[25]  D. Hanna,et al.  Ring-doped cladding-pumped single-mode three-level fiber laser. , 1998, Optics letters.

[26]  Alain Chandonnet,et al.  High-power Q-switched erbium fiber laser using an all-fiber intensity modulator , 1993 .

[27]  Valeri I Kovalev,et al.  Waveguide-induced inhomogeneous spectral broadening of stimulated Brillouin scattering in optical fiber. , 2002, Optics letters.

[28]  D N Payne,et al.  Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power. , 2005, Optics letters.

[29]  Sergei K. Turitsyn,et al.  Optimisation of two-stage Raman converter based on phosphosilicate core fibre: modelling and experiment , 2001 .

[30]  Evgeny Vanin,et al.  Polarization dependence of Raman gain on propagation direction of pump and probe signal in optical fibers , 2001, CLEO 2001.

[31]  C. R. Giles,et al.  Modeling erbium-doped fiber amplifiers , 1991 .

[32]  Yong Wang,et al.  Heat dissipation in kilowatt fiber power amplifiers , 2004 .

[33]  D. Hanna,et al.  Lifetime quenching in Yb-doped fibres , 1997 .

[34]  A. Picozzi,et al.  Soliton compression in Brillouin fiber lasers. , 2001, Optics letters.

[35]  Gerald T. Moore A model for diffraction-limited high-power multimode fiber amplifiers using seeded stimulated Brillouin scattering phase conjugation , 2001 .

[36]  R. H. Stolen,et al.  The effect of pulse walkoff on stimulated Raman scattering in fibers , 1986 .

[37]  Hui-Tian Wang,et al.  Tunable high-peak-power, high-energy hybrid Q-switched double-clad fiber laser. , 2004, Optics letters.

[38]  Michel J. F. Digonnet,et al.  Rare earth doped fiber lasers and amplifiers , 1993 .

[39]  J. Limpert,et al.  High-average-power femtosecond fiber chirped-pulse amplification system. , 2003, Optics letters.

[40]  R. Collins,et al.  MODE COMPETITION AND SELF‐LOCKING EFFECTS IN A Q‐SWITCHED RUBY LASER , 1965 .

[41]  N. R. Newbury Pump-wavelength dependence of Raman gain in single-mode optical fibers , 2003 .

[42]  L. Zenteno,et al.  High-power double-clad fiber lasers , 1993 .

[43]  M. M. Broer,et al.  Highly nonlinear near-resonant photodarkening in a thulium-doped aluminosilicate glass fiber. , 1993, Optics letters.

[44]  L A Zenteno,et al.  Gain switching of a Nd(+3)-doped fiber laser. , 1989, Optics letters.

[45]  G. Atkins,et al.  Photodarkening in Tb(3+)-doped phosphosilicate and germanosilicate optical fibers. , 1994, Optics letters.

[46]  Agrawal Optical pulse propagation in doped fiber amplifiers. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[47]  J. W. Thomas Numerical Partial Differential Equations: Finite Difference Methods , 1995 .

[48]  Miguel V. Andrés,et al.  All-fiber actively Q-switched Yb-doped laser , 2006 .

[49]  Patrice Mégret,et al.  Passive Q-switching in all-fibre Raman laser with distributed Rayleigh feedback , 2004 .

[50]  D. Pagnoux,et al.  Analysis and Optimization of a Q-Switched Erbium Doped Fiber Laser Working with a Short Rise Time Modulator , 1996 .

[51]  D. H. Stone Effects of axial nonuniformity in modeling Q-switched lasers , 1992 .

[52]  Erik Zucker,et al.  110 W fibre laser , 1999 .

[53]  B C Thomsen,et al.  Self-similar propagation and amplification of parabolic pulses in optical fibers. , 2000, Physical review letters.

[54]  Jake Bromage,et al.  Scaling of the Raman gain coefficient: applications to germanosilicate fibers , 2003 .

[55]  Raymond J. Beach,et al.  Optimization of quasi-three level end-pumped Q-switched lasers , 1995 .

[56]  E. R. Taylor,et al.  Short-pulse, high-power Q-switched fiber laser , 1992, IEEE Photonics Technology Letters.

[57]  Elias Snitzer,et al.  Amplification in a Fiber Laser , 1964 .

[58]  Valentin Gapontsev,et al.  25 kW peak power, wide tunable-repetition-rate and pulse duration eye-safe MOPFA laser , 1996, Summaries of papers presented at the Conference on Lasers and Electro-Optics.

[59]  T. Midavaine,et al.  High efficiency 1.53 /spl mu/m all-fibre pulsed source based on a Q-switched erbium doped fibre ring laser , 1997 .

[60]  S. Tsai,et al.  Simultaneous Q-switching and mode-locking in a diode-pumped Nd:YVO/sub 4/-Cr/sup 4+/:YAG laser , 2001 .

[61]  Chang-Qing Xu,et al.  Understanding multipeak phenomena in actively Q-switched fiber lasers. , 2004, Optics letters.

[62]  Shengzhi Zhao,et al.  Diode-pumped passively Q-switched mode-locked c-cut Nd:GdVO/sub 4//KTP Green laser with a GaAs wafer , 2006, IEEE Journal of Quantum Electronics.

[63]  Lew Goldberg,et al.  High efficiency side-coupling of light into optical fibres using imbedded v-grooves , 1995 .

[64]  David Sabourdy,et al.  Coherent combining of Q-switched fibre lasers , 2004 .

[65]  M.S. Demokan,et al.  Transient analysis of erbium-doped fiber amplifiers , 1994, IEEE Photonics Technology Letters.

[66]  Trevor P. Newson,et al.  980nm diode pumped Er/Yb doped Q-switched fibre laser , 1995 .

[67]  P. Cheo,et al.  Thermomechanical properties of high-power and high-energy Yb-doped silica fiber lasers , 2004, IEEE Photonics Technology Letters.

[68]  P. Andrekson,et al.  Increase of the SBS threshold in a short highly nonlinear fiber by applying a temperature distribution , 2001 .

[69]  David J. Richardson,et al.  High-power, high-brightness, mJ Q-switched ytterbium-doped fibre laser , 2004 .

[70]  N. M. Cho,et al.  All-solid-state passively Q-switched mode-locked Nd-doped fiber laser. , 1990, Optics letters.

[71]  Wen-Fung Liu,et al.  Q-switched all-fiber laser with an acoustically modulated fiber attenuator , 2000, IEEE Photonics Technology Letters.

[72]  Stephan,et al.  General analysis of instabilities in erbium-doped fiber lasers. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[73]  David J. Richardson,et al.  Q-switched erbium doped fibre laser utilising a novel large mode area fibre , 1997 .

[74]  D J Richardson,et al.  High-energy single-transverse-mode Q-switched fiber laser based on a multimode large-mode-area erbium-doped fiber. , 1998, Optics letters.

[75]  R. Hey,et al.  Self pulsing versus self locking in a cw pumped neodymium doped double clad fiber laser , 1999 .

[76]  S. Radic,et al.  Six-wavelength Raman fibre laser for C- and L-band Raman amplification and dynamic gain flattening , 2002 .

[77]  Amos A. Hardy,et al.  Signal amplification in strongly pumped fiber amplifiers , 1997 .

[78]  Yong Wang,et al.  Characteristics of fibre Bragg gratings and influences on high-power Raman fibre lasers , 2003 .

[79]  J. J. Degnan,et al.  Theory of the optimally coupled Q-switched laser , 1989 .

[80]  A. Chraplyvy,et al.  Single-pass mode-locked or Q-switched pump operation of D2 gas-in-glass fiber Raman lasers operating at 1.56-microm wavelength. , 1985, Optics letters.

[81]  J. Schlager,et al.  Subpicosecond pulse compression and Raman generation using a mode-locked erbium-doped fiber laser-amplifier , 1990, IEEE Photonics Technology Letters.

[82]  P. Cheo Fiber optics and opto-electronics , 1990 .

[83]  J. Nilsson,et al.  Ultra-short pulse Yb/sup 3+/ fiber based laser and amplifier system producing >25 W average power , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[84]  Yong Wang,et al.  Switching-induced perturbation and influence on actively Q-switched fiber lasers , 2004 .

[85]  Kazimierz Jędrzejewski,et al.  Q-switched neodymium-doped phosphate glass fiber lasers , 1993 .

[86]  Trevor P. Newson,et al.  Diode pumped high power simultaneously Q-switched and self mode-locked erbium doped fibre laser , 1996 .

[87]  Ammar Hideur,et al.  Influence of cavity losses on stimulated Brillouin scattering in a self-pulsing side-pumped ytterbium-doped double-clad fiber laser , 2003 .

[88]  S. Setzler,et al.  5-W repetitively Q-switched Er:LuAG laser resonantly pumped by an erbium fiber laser. , 2003, Optics letters.

[89]  Ken-ichi Ueda,et al.  Influence of cross-sectional shape on absorption characteristics of double-clad fiber lasers , 2002, CLEO 2002.

[90]  Fuyun Lu,et al.  105-kW peak-power double-clad fiber laser , 2003 .

[91]  Ram Oron,et al.  Rayleigh backscattering and amplified spontaneous emission in high-power ytterbium-doped fiber amplifiers , 1999 .

[92]  M. Mansuripur,et al.  Active Q switching of a fiber laser with a microsphere resonator. , 2006, Optics letters.

[93]  J Swiderski,et al.  Numerical model of a Q-switched double-clad fiber laser. , 2004, Optics express.

[94]  J. Nilsson,et al.  Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40 nm , 1999, IEEE Photonics Technology Letters.

[95]  J. Price,et al.  Cladding pumped Ytterbium-doped fiber laser with holey inner and outer cladding. , 2001, Optics express.

[96]  Yahei Koyamada,et al.  Analysis and design of Q-switched erbium-doped fiber lasers and their application to OTDR , 2002 .

[97]  Michel J. F. Digonnet,et al.  Thermal effects in doped fibers , 1998 .

[98]  Ammar Hideur,et al.  Dynamics and stabilization of a high power side-pumped Yb- doped double-clad fiber laser , 2000 .

[99]  L. Zenteno Design of a device for pumping a double-clad fiber laser with a laser-diode bar. , 1994, Applied optics.

[100]  Z. J. Chen,et al.  Enhanced Q switching in double-clad fiber lasers. , 1998, Optics letters.

[101]  Chang-Qing Xu,et al.  Modeling and optimization of Q-switched double-clad fiber lasers. , 2006, Applied optics.

[102]  Walter Koechner,et al.  Solid-State Laser Engineering , 1976 .

[103]  H. Suzuki,et al.  Application of Raman-distributed amplification to WDM transmission systems using 1.55-/spl mu/m dispersion-shifted fiber , 2001 .

[104]  David N. Payne,et al.  Low-threshold tunable CW and Q-switched fibre laser operating at 1.55 μm , 1986 .

[105]  Heinz Georg Schuster,et al.  Dynamics of Lasers , 1991 .

[106]  Heinz P. Weber,et al.  A longitudinal and side-pumped single transverse mode double-clad fiber laser with a special silicone coating , 1995 .

[107]  Patrice Mégret,et al.  Dynamics of a self-Q-switched fiber laser with a Rayleigh-stimulated Brillouin scattering ring mirror. , 2004, Optics letters.

[108]  R. G. Smith,et al.  A REPETITIVELY Q‐SWITCHED, CONTINUOUSLY PUMPED YAG:Nd LASER , 1965 .

[109]  D. Hanna,et al.  Ytterbium-doped silica fiber lasers: versatile sources for the 1-1.2 /spl mu/m region , 1995 .

[110]  Yong Wang Optimization of pulse amplification in ytterbium-doped double-clad fiber amplifiers , 2005 .

[111]  H. Poignant,et al.  Narrow linewidth tunable CW and Q-switched 0.98 mu m operation of erbium-doped fluorozirconate fibre laser , 1989 .

[112]  Y. Shi,et al.  Dye laser pumped Pr/sup 3+/-doped fiber lasers: basic parameter investigation, CW operation, and Q-switched operation , 1993 .

[113]  T. King,et al.  High-peak-power operation of a Q-switched Tm3+-doped silica fiber laser operating near 2 microm. , 2003, Optics letters.

[114]  D. C. Hanna,et al.  Actively mode-locked and passively Q-switched operation of thulium-doped fibre laser using multiquantum well asymmetric Fabry-Perot modulator , 1992 .

[115]  Govind P. Agrawal,et al.  Laser instabilities: a modern perspective , 1998 .

[116]  David C. Brown,et al.  Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers , 2001 .

[117]  J. Limpert,et al.  100-W single-frequency master-oscillator fiber power amplifier. , 2003, Optics letters.

[118]  N.S. Platonov,et al.  400 W low-noise single-mode CW ytterbium fiber laser with an integrated fiber delivery , 2003, Conference on Lasers and Electro-Optics, 2003. CLEO '03..

[119]  Yong Wang Dynamics of stimulated Raman scattering in double-clad fiber pulse amplifiers , 2005 .

[120]  F. Lederer,et al.  Long-haul soliton transmission at 1.3 /spl mu/m using distributed Raman amplification , 2001 .

[121]  Ch. Frerichs,et al.  Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 mu m , 1994 .

[122]  Dietrich Marcuse,et al.  Curvature loss formula for optical fibers , 1976 .

[123]  David N. Payne,et al.  Er/sup 3+/-Yb/sup 3+/ and Er/sup 3+/ doped fiber lasers , 1989 .

[124]  D. E. Spence,et al.  60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. , 1991, Optics letters.

[125]  C. Gaeta,et al.  Theoretical analysis of optical fiber laser amplifiers and oscillators. , 1985, Applied optics.

[126]  J. Limpert,et al.  500 W continuous-wave fibre laser with excellent beam quality , 2003 .

[127]  O. Okhotnikov,et al.  Multiple wavelength Q-switched fiber laser , 1999, IEEE Photonics Technology Letters.

[128]  Y. Jeong,et al.  Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power. , 2004, Optics express.

[129]  L. Frantz,et al.  Theory of Pulse Propagation in a Laser Amplifier , 1963 .

[130]  A. A. Demidov,et al.  Efficient operation of double-clad Yb3+-doped fiber lasers with a novel circular cladding geometry. , 2003, Optics letters.

[131]  M. Nakazawa,et al.  Broadband light generation by femtosecond pulse amplification with stimulated Raman scattering in a high-power erbium-doped fiber amplifier. , 1995, Optics letters.

[132]  William G. Wagner,et al.  Evolution of the Giant Pulse in a Laser , 1963 .

[133]  P. Cheo,et al.  Modeling and experiments of actively Q-switched Er/sup 3+/-Yb/sup 3+/ codoped clad-pumped fiber lasers , 2005, IEEE Journal of Quantum Electronics.

[134]  Valerii I Kovalev,et al.  Diffraction limited output from a CW Nd:YAG master oscillator/power amplifier with fibre phase conjugate SBS mirror , 1999 .

[135]  A. M. Prokhorov,et al.  30 dB gain Raman amplifier at 1.3 mu m in lowloss high GeO/sub 2/-doped silica fibres , 1995 .

[136]  Yong Wang,et al.  Dynamic characteristics of double-clad fiber amplifiers for high-power pulse amplification , 2003 .

[137]  J Chrostowski,et al.  Self-mode locking in a Q-switched erbium-doped fiber laser. , 1993, Applied optics.

[138]  V. I. Kovalev,et al.  Suppression of stimulated Brillouin scattering in high-power single-frequency fiber amplifiers. , 2006, Optics letters.

[139]  J K Sahu,et al.  High-power tunable single-frequency single-mode erbium:ytterbium codoped large-core fiber master-oscillator power amplifier source. , 2005, Optics letters.

[140]  D J Richardson,et al.  High-energy, high-power ytterbium-doped Q-switched fiber laser. , 2000, Optics letters.

[141]  Yanming Huo,et al.  Kinetic modeling of Q-switched high-power ytterbium-doped fiber lasers. , 2004, Applied optics.