Analysis of Local Search Landscapes for k-SAT Instances

Stochastic local search is a successful technique in diverse areas of combinatorial optimisation and is predominantly applied to hard problems. When dealing with individual instances of hard problems, gathering information about specific properties of instances in a pre-processing phase is helpful for an appropriate parameter adjustment of local search-based procedures. In the present paper, we address parameter estimations in the context of landscapes induced by k-SAT instances: at first, we utilise a sampling method devised by Garnier and Kallel in 2002 for approximations of the number of local maxima in landscapes generated by individual k-SAT instances and a simple neighbourhood relation. The objective function is given by the number of satisfied clauses. The procedure provides good approximations of the actual number of local maxima, with a deviation typically around 10%. Secondly, we provide a method for obtaining upper bounds for the average number of local maxima in k-SAT instances. The method allows us to obtain the upper bound $$2^{n-O(\sqrt{n/k})}$$ for the average number of local maxima, if m is in the region of 2k· n/k.

[1]  Josselin Garnier,et al.  Efficiency of Local Search with Multiple Local Optima , 2001, SIAM J. Discret. Math..

[2]  A. Barvinok On the number of matrices and a random matrix with prescribed row and column sums and 0–1 entries☆ , 2008, 0806.1480.

[3]  Rémi Monasson,et al.  Statistical mechanics methods and phase transitions in optimization problems , 2001, Theor. Comput. Sci..

[4]  Pekka Orponen,et al.  An efficient local search method for random 3-satisfiability , 2003, Electron. Notes Discret. Math..

[5]  Andrea Montanari,et al.  Instability of one-step replica-symmetry-broken phase in satisfiability problems , 2003, ArXiv.

[6]  Harvey J. Greenberg,et al.  Opportunities for Combinatorial Optimization in Computational Biology , 2004, INFORMS J. Comput..

[7]  Yuval Peres,et al.  The threshold for random k-SAT is 2k (ln 2 - O(k)) , 2003, STOC '03.

[8]  Kathleen Steinhöfel,et al.  Relating time complexity of protein folding simulation to approximations of folding time , 2007, Comput. Phys. Commun..

[9]  Walter Kern,et al.  An improved deterministic local search algorithm for 3-SAT , 2004, Theor. Comput. Sci..

[10]  Kathleen Steinhöfel,et al.  Combinatorial landscape analysis for k-SAT instances , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[11]  Dale Schuurmans,et al.  Local search characteristics of incomplete SAT procedures , 2000, Artif. Intell..

[12]  Pekka Orponen,et al.  Threshold Behaviour of WalkSAT and Focused Metropolis Search on Random 3-Satisfiability , 2005, SAT.

[13]  Christian M. Reidys,et al.  Combinatorial Landscapes , 2002, SIAM Rev..

[14]  Weixiong Zhang,et al.  Configuration landscape analysis and backbone guided local search: Part I: Satisfiability and maximum satisfiability , 2004, Artif. Intell..

[15]  R. Monasson,et al.  Statistical Mechanics of the K--Satisfiability Model , 1996, cond-mat/9606215.

[16]  Michael E. Saks,et al.  An improved exponential-time algorithm for k-SAT , 2005, JACM.

[17]  Andreas Alexander Albrecht,et al.  A Stopping Criterion for Logarithmic Simulated Annealing , 2006, Computing.

[18]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[19]  Andreas Alexander Albrecht,et al.  Stochastic protein folding simulation in the three-dimensional HP-model , 2008, Comput. Biol. Chem..

[20]  Evgeny Dantsin,et al.  An Improved Upper Bound for SAT , 2005, SAT.

[21]  Walter Kern,et al.  An improved local search algorithm for 3-SAT , 2004, Electron. Notes Discret. Math..

[22]  Rainer Schuler,et al.  An algorithm for the satisfiability problem of formulas in conjunctive normal form , 2005, J. Algorithms.

[23]  Thomas Stützle,et al.  Towards a Characterisation of the Behaviour of Stochastic Local Search Algorithms for SAT , 1999, Artif. Intell..

[24]  Torben Hagerup,et al.  A Guided Tour of Chernoff Bounds , 1990, Inf. Process. Lett..

[25]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[26]  Pekka Orponen,et al.  Circumspect descent prevails in solving random constraint satisfaction problems , 2007, Proceedings of the National Academy of Sciences.

[27]  Dimitris Achlioptas,et al.  THE THRESHOLD FOR RANDOM k-SAT IS 2k log 2 O(k) , 2004, FOCS 2004.

[28]  Uwe Scḧoning,et al.  A Probabilistic Algorithm for kSAT Based on Limited Local Search and Restart , 2010 .

[29]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[30]  Uwe Schöning,et al.  A Probabilistic Algorithm for k -SAT Based on Limited Local Search and Restart , 2002, Algorithmica.

[31]  M. Mézard,et al.  Random K-satisfiability problem: from an analytic solution to an efficient algorithm. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[32]  Ivan Serina,et al.  Planning as Propositional CSP: From Walksat to Local Search Techniques for Action Graphs , 2003, Constraints.

[33]  H. Robbins A Remark on Stirling’s Formula , 1955 .

[34]  Brendan D. McKay,et al.  Asymptotic enumeration of dense 0-1 matrices with specified line sums , 2008, J. Comb. Theory, Ser. A.

[35]  Kathleen Steinhöfel,et al.  Stochastic Protein Folding Simulation in the d-Dimensional HP-Model , 2007, BIRD.

[36]  Anton V. Eremeev,et al.  Statistical analysis of local search landscapes , 2004, J. Oper. Res. Soc..

[37]  Petteri Kaski,et al.  Barriers and local minima in energy landscapes of stochastic local search , 2006, ArXiv.