Influence of Calcination Temperature on Microstructure and Properties of (NiCuZn)Fe2O4 Ferrite Prepared via Ultrasonic-Assisted Co-Precipitation

[1]  R. Kambale,et al.  Microstructure and magnetic interactions of Co2+ substituted NiCuZn ferrites , 2021 .

[2]  C. Xia,et al.  Effect of reaction condition on microstructure and properties of (NiCuZn)Fe2O4 nanoparticles synthesized via co-precipitation with ultrasonic irradiation , 2020, Ultrasonics Sonochemistry.

[3]  A. Verma,et al.  Magnetic and electrical traits of sol-gel synthesized Ni-Cu-Zn nanosized spinel ferrites for multi-layer chip inductors application , 2020 .

[4]  A. Trukhanov,et al.  Investigation of structural and physical properties of Eu3+ ions substituted Ni0.4Cu0.2Zn0.4Fe2O4 spinel ferrite nanoparticles prepared via sonochemical approach , 2020 .

[5]  Gang Wang,et al.  Synthesis of V2O5-Doped and low-sintered NiCuZn ferrite with uniform grains and enhanced magnetic properties , 2020 .

[6]  Sandeep B. Somvanshi,et al.  Magneto-structural and photocatalytic behavior of mixed Ni–Zn nano-spinel ferrites: visible light-enabled active photodegradation of rhodamine B , 2020, Journal of Materials Science: Materials in Electronics.

[7]  M. A. Hamad,et al.  The Simulated Magnetocaloric Properties for Ni0.5Cu0.25Zn0.25Fe2O4 Nanoferrites , 2020, Journal of Superconductivity and Novel Magnetism.

[8]  Ming Zhang,et al.  Ultrasonic-induced enhancement in interfacial exchange coupling of composite ferrites via chemical co-precipitation , 2020 .

[9]  K. S. Rao,et al.  Structural and Magnetic Properties of Copper-Substituted Nickel–Zinc Nanoparticles Prepared by Sol-Gel Method , 2020 .

[10]  Sandeep B. Somvanshi,et al.  Spinel zinc ferrite nanoparticles: an active nanocatalyst for microwave irradiated solvent free synthesis of chalcones , 2020, Materials Research Express.

[11]  A. Pui,et al.  Tertiary NiCuZn ferrites for improved humidity sensors: A systematic study , 2020 .

[12]  J. Havlica,et al.  Impact of sonochemical synthesis condition on the structural and physical properties of MnFe2O4 spinel ferrite nanoparticles. , 2020, Ultrasonics sonochemistry.

[13]  A. Yıldız,et al.  Ni0.4Cu0.2Zn0.4TbxFe2-xO4 nanospinel ferrites: Ultrasonic synthesis and physical properties. , 2019, Ultrasonics sonochemistry.

[14]  M. Almessiere,et al.  Sonochemical synthesis and physical properties of Co0.3Ni0.5Mn0.2EuxFe2-xO4 nano-spinel ferrites. , 2019, Ultrasonics sonochemistry.

[15]  S. Akhtar,et al.  Structural, magnetic, optical properties and cation distribution of nanosized Co0.7Zn0.3TmxFe2-xO4 (0.0 ≤ x ≤ 0.04) spinel ferrites synthesized by ultrasonic irradiation. , 2019, Ultrasonics sonochemistry.

[16]  Gang Wang,et al.  Bi2O3-doping controlled magnetic and dielectric properties of low-temperature co-fired NiCuZn ferrite for high-frequency applications , 2019, Journal of Materials Science: Materials in Electronics.

[17]  Dianzeng Jia,et al.  Controlling of resistive switching and magnetism through Cu2+ ions substitution in nickel ferrite based nonvolatile memory , 2019, Journal of Alloys and Compounds.

[18]  A. D. Korkmaz,et al.  Structural, optical and magnetic properties of Tm3+ substituted cobalt spinel ferrites synthesized via sonochemical approach. , 2019, Ultrasonics sonochemistry.

[19]  Huaiwu Zhang,et al.  Effects of calcination temperature and flux doping on the microstructure and magnetic properties of low-temperature-fired NiCuZn ferrites , 2019, Journal of Magnetism and Magnetic Materials.

[20]  H. Harzali,et al.  Structural, magnetic and optical properties of nanosized Ni0.4Cu0.2Zn0.4R0.05Fe1.95O4 (R = Eu3+, Sm3+, Gd3+ and Pr3+) ferrites synthesized by co-precipitation method with ultrasound irradiation , 2018, Journal of Magnetism and Magnetic Materials.

[21]  M. Ismail,et al.  Structural Analysis and Magnetic Properties of Lithium-Doped Ni-Zn Ferrite Nanoparticle , 2018 .

[22]  D. M. Potukuchi,et al.  Investigation of cation distribution and magnetocrystalline anisotropy of NixCu0.1Zn0.9−xFe2O4 nanoferrites: Role of constant mole percent of Cu2+ dopant in place of Zn2+ , 2017 .

[23]  Mukhtar Ahmad,et al.  Evaluation of structural, morphological and magnetic properties of CuZnNi (CuxZn0.5−xNi0.5Fe2O4) nanocrystalline ferrites for core, switching and MLCI’s applications , 2017 .

[24]  R. Saravanan,et al.  Structural, magnetic and optical characterization of Ni0.8Zn0.2Fe2O4 nano particles prepared by co-precipitation method , 2016 .

[25]  F. Espitalier,et al.  Structural and magnetic properties of nano-sized NiCuZn ferrites synthesized by co-precipitation method with ultrasound irradiation , 2016 .

[26]  J. Rohan,et al.  MEMS based fabrication of high-frequency integrated inductors on Ni–Cu–Zn ferrite substrates , 2016 .

[27]  H. Hsiang,et al.  Ag precipitation at the free interface of multilayer NiCuZn ferrites/LTCC components , 2016 .

[28]  V. Harris,et al.  Influence of particle size on the magnetic spectrum of NiCuZn ferrites for electromagnetic shielding applications , 2016 .

[29]  Yazhou Wang,et al.  Sintering, microstructure and magnetic properties of low temperature co-fired NiCuZn ferrites with Nb2O5 and MoO3 additions , 2015 .

[30]  Zhi Wang,et al.  Structural and magnetic properties of Ni0.15Mg0.1Cu0.3Zn0.45Fe2O4 ferrite prepared by NaOH-precipitation method , 2015 .

[31]  Chung Yen Chiang,et al.  Addition of a minor amount of Co2Y effects on the microstructure, magnetic properties and DC-bias superposition characteristics of low-fire NiCuZn ferrites , 2015 .

[32]  A. Ghasemi Particle size dependence of magnetic features for Ni 0.6-x Cu x Zn 0.4 Fe 2 O 4 spinel nanoparticles , 2014 .

[33]  K. Rao,et al.  Effect of sintering temperature on electromagnetic properties of NiCuZn ferrite , 2013 .

[34]  A. Ghasemi,et al.  Influence of copper cations on the magnetic properties of NiCuZn ferrite nanoparticles , 2011 .

[35]  Chuangui Jin,et al.  Comparative study of structural and magnetic properties of NiZnCu ferrite powders prepared via chemical coprecipitation method with different coprecipitators , 2011 .

[36]  G. Liang,et al.  High-frequency magnetic properties of Ni-Zn ferrite nanoparticles synthesized by a low temperature chemical method , 2011 .

[37]  M. V. Ramana,et al.  STRUCTURAL, MAGNETIC AND ELECTRICAL PROPERTIES OF NICUZN FERRITES PREPARED BY MICROWAVE SINTERING METHOD SUITABLE FOR MLCI APPLICATIONS , 2010 .

[38]  G. Kurlyandskaya,et al.  Characterization of nanosized spinel ferrite powders synthesized by coprecipitation and autocombustion method , 2010 .

[39]  Xia Li,et al.  Low-temperature synthesis and growth of superparamagnetic Zn0.5Ni0.5Fe2O4 nanosized particles , 2009 .

[40]  Jung-Sik Kim,et al.  The effect of calcining temperature on the magnetic properties of the ultra-fine NiCuZn-ferrites , 2009 .

[41]  Jianbo Wang,et al.  Structural, dynamic magnetic and dielectric properties of Ni0.15Cu0.2Zn0.65Fe2O4 ferrite produced by NaOH co-precipitation method , 2008 .

[42]  S. Murthy,et al.  Fabrication of multilayer chip inductors using Ni-Cu-Zn ferrites , 2006 .

[43]  J. Koh,et al.  A study of synthesis of NiCuZn-ferrite sintering in low temperature by metal nitrates and its electromagnetic property , 2003 .

[44]  S. Date,et al.  Effect of Cu substitution on the magnetic and electrical properties of Ni–Zn ferrite synthesised by soft chemical method , 1999 .