Quantum dot microcavity lasers on silicon substrates

[1]  Lord Rayleigh,et al.  CXII. The problem of the whispering gallery , 1910 .

[2]  W. L. Bond,et al.  Stimulated Emission into Optical Whispering Modes of Spheres , 1961 .

[3]  D. Scifres,et al.  Grating‐coupled GaAs single heterostructure ring laser , 1976 .

[4]  H. Sakaki,et al.  Multidimensional quantum well laser and temperature dependence of its threshold current , 1982 .

[5]  John E. Bowers,et al.  High-speed InGaAsP constricted-mesa lasers , 1986 .

[6]  J. Lee,et al.  Defect reduction by thermal annealing of GaAs layers grown by molecular beam epitaxy on Si substrates , 1987 .

[7]  N. El-Masry,et al.  Interactions of dislocations in GaAs grown on Si substrates with InGaAs-GaAsP strained layered superlattices , 1988 .

[8]  Hadis Morkoç,et al.  Gallium arsenide and other compound semiconductors on silicon , 1990 .

[9]  Masayuki Ishikawa,et al.  High speed quantum-well lasers and carrier transport effects , 1992 .

[10]  Umar Mohideen,et al.  Threshold characteristics of semiconductor microdisk lasers , 1993 .

[11]  Y. Takeda,et al.  Lasing Characteristics of , 1994 .

[12]  L. Coldren,et al.  Diode Lasers and Photonic Integrated Circuits , 1995 .

[13]  Lester F. Eastman,et al.  High-Speed Direct Modulation of Semiconductor Lasers , 1997 .

[14]  D. Bimberg,et al.  Temperature dependent optical properties of self-organized InAs/GaAs quantum dots , 1999 .

[15]  Christophe Dupuis,et al.  High-Q wet-etched GaAs microdisks containing InAs quantum boxes , 1999 .

[16]  Sanjay Krishna,et al.  Self-organized In0.4Ga0.6As quantum-dot lasers grown on Si substrates , 1999 .

[17]  A. Stintz,et al.  Low-threshold current density 1.3-μm InAs quantum-dot lasers with the dots-in-a-well (DWELL) structure , 2000, IEEE Photonics Technology Letters.

[18]  Nikolai N. Ledentsov,et al.  Quantum dot lasers: breakthrough in optoelectronics , 2000 .

[19]  M. Umeno,et al.  Realization of GaAs/AlGaAs Lasers on Si Substrates Using Epitaxial Lateral Overgrowth by Metalorganic Chemical Vapor Deposition , 2001 .

[20]  A. Stintz,et al.  Room-temperature operation of InAs quantum-dash lasers on InP [001] , 2001, IEEE Photonics Technology Letters.

[21]  E. V. D. Drift,et al.  Amorphous silicon waveguides for microphotonics , 2002 .

[22]  Harry L. T. Lee,et al.  Monolithic integration of room-temperature cw GaAs/AlGaAs lasers on Si substrates via relaxed graded GeSi buffer layers , 2003 .

[23]  Jasprit Singh,et al.  Carrier dynamics and high-speed modulation properties of tunnel injection InGaAs-GaAs quantum-dot lasers , 2003 .

[24]  E. Hu,et al.  Lasing from InGaAs quantum dots in an injection microdisk , 2003 .

[25]  Sasan Fathpour,et al.  The role of Auger recombination in the temperature-dependent output characteristics (T0=∞) of p-doped 1.3 μm quantum dot lasers , 2004 .

[26]  Yasuhiko Arakawa,et al.  Room temperature continuous wave lasing in InAs quantum-dot microdisks with air cladding. , 2005, Optics express.

[27]  A. Harke,et al.  Low-loss singlemode amorphous silicon waveguides , 2005 .

[28]  D. Bouwmeester,et al.  Self-tuned quantum dot gain in photonic crystal lasers. , 2005, Physical review letters.

[29]  L. O'Faolain,et al.  Reduced surface sidewall recombination and diffusion in quantum-dot lasers , 2006, IEEE Photonics Technology Letters.

[30]  Zhenqiang Ma,et al.  Microwave thin-film transistors using Si nanomembranes on flexible polymer substrate , 2006 .

[31]  T. Asano,et al.  Spontaneous-emission control by photonic crystals and nanocavities , 2007 .

[32]  Pallab Bhattacharya,et al.  High-Temperature Tunneling Quantum-Dot Intersublevel Detectors for Mid-Infrared to Terahertz Frequencies , 2007, Proceedings of the IEEE.

[33]  E. Rafailov,et al.  Mode-locked quantum-dot lasers , 2007 .

[34]  Trevor M. Benson,et al.  Trends in microdisk laser research and linear optical modelling , 2007 .

[35]  R Baets,et al.  Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. , 2007, Optics express.

[36]  Frank Jahnke,et al.  Semiconductor model for quantum-dot-based microcavity lasers , 2007 .

[37]  Laurent Schares,et al.  High-speed, low-voltage optical receivers consisting of Ge-on-SOI photodiodes paired with CMOS ICs , 2007, SPIE OPTO.

[38]  C.L. Schow,et al.  Ge-on-SOI-Detector/Si-CMOS-Amplifier Receivers for High-Performance Optical-Communication Applications , 2007, Journal of Lightwave Technology.

[39]  Pallab Bhattacharya,et al.  Quantum-Dot Optoelectronic Devices , 2007, Proceedings of the IEEE.

[40]  Shuji Nakamura,et al.  Room-temperature continuous-wave lasing in GaN/InGaN microdisks , 2007 .

[41]  Tian Yang,et al.  Lasing characteristics of InAs quantum dot microcavity lasers as a function of temperature and wavelength. , 2007, Optics express.

[42]  O. P. Pchelyakov,et al.  GaAs epitaxy on Si substrates: modern status of research and engineering , 2008 .

[43]  J. Fastenau,et al.  Quantum Dashes on InP Substrate for Broadband Emitter Applications , 2008, IEEE Journal of Selected Topics in Quantum Electronics.

[44]  Pallab Bhattacharya,et al.  Integration of epitaxially-grown InGaAs/GaAs quantum dot lasers with hydrogenated amorphous silicon waveguides on silicon. , 2008, Optics express.

[45]  A. Fiore,et al.  Electro-optic and electro-absorption characterization of InAs quantum dot waveguides. , 2008, Optics express.

[46]  A. Zunger,et al.  Theoretical and experimental examination of the intermediate-band concept for strain-balanced (In,Ga)As/Ga(As,P) quantum dot solar cells , 2008 .

[47]  M.K. Smit,et al.  InAs–InP (1.55- $\mu$m Region) Quantum-Dot Microring Lasers , 2008, IEEE Photonics Technology Letters.

[48]  Di Liang,et al.  Electrically-pumped compact hybrid silicon microring lasers for optical interconnects. , 2009, Optics express.

[49]  Orientation dependent emission properties of columnar quantum dash laser structures , 2009 .

[50]  T. Vallaitis,et al.  High-Speed Small-Signal Cross-Gain Modulation in Quantum-Dot Semiconductor Optical Amplifiers at 1.3 $\mu$m , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[51]  Sergey Mikhrin,et al.  A single comb laser source for short reach WDM interconnects , 2009, OPTO.

[52]  Mitsuru Sugawara,et al.  Quantum dot devices: Handling the heat , 2009 .

[53]  Pallab Bhattacharya,et al.  High-Performance Quantum Dot Lasers and Integrated Optoelectronics on Si , 2009, Proceedings of the IEEE.

[54]  H. Kondo,et al.  Ground state lasing at 1.30 µm from InAs/GaAs quantum dot lasers grown by metal–organic chemical vapor deposition , 2010, Nanotechnology.

[55]  Yasuhiko Arakawa,et al.  25 Gbps direct modulation in 1.3-µm InAs/GaAs high-density quantum dot lasers , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[56]  J. Michel,et al.  High-performance Ge-on-Si photodetectors , 2010 .

[57]  M. Yamaguchi,et al.  Extremely high temperature (220°C) continuous-wave operation of 1300-nm-range quantum-dot lasers , 2011, 2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC).

[58]  Dieter Bimberg,et al.  Quantum dots: promises and accomplishments , 2011 .

[59]  M.-H. Mao,et al.  Room-temperature low-threshold current-injection InGaAs quantum-dot microdisk lasers with single-mode emission. , 2011, Optics express.

[60]  J. Coleman,et al.  Semiconductor Quantum Dot Lasers: A Tutorial , 2011, Journal of Lightwave Technology.

[61]  L A Coldren,et al.  High Performance InP-Based Photonic ICs—A Tutorial , 2011, Journal of Lightwave Technology.

[62]  T. Harayama,et al.  Two‐dimensional microcavity lasers , 2011 .

[63]  M. Takenaka,et al.  Propagation-Loss Reduction in InGaAsP Photonic- wire Waveguides by InP and Al2O3 Passivation Layers , 2012 .

[64]  High-temperature lasing in a microring laser with an active region based on InAs/InGaAs quantum dots , 2012 .

[65]  M. Maksimov,et al.  Device characteristics of long-wavelength lasers based on self-organized quantum dots , 2012 .

[66]  A. Mizrahi,et al.  Thresholdless nanoscale coaxial lasers , 2011, Nature.

[67]  Alwyn Seeds,et al.  Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. , 2012, Optics express.

[68]  Lan Yang,et al.  Whispering gallery microcavity lasers , 2013 .

[69]  T. Kurosaki,et al.  50-Gb/s Direct Modulation of a 1.3-μm InGaAlAs-Based DFB Laser With a Ridge Waveguide Structure , 2013, IEEE Journal of Selected Topics in Quantum Electronics.

[70]  Yong-Zhen Huang,et al.  Optimization of direct modulation rate for circular microlasers by adjusting mode Q factor , 2013 .

[71]  Stephen J. Pearton,et al.  Materials and reliability handbook for semiconductor optical and electron devices , 2013 .

[72]  S. Reitzenstein,et al.  On‐Chip Quantum Optics with Quantum Dot Microcavities , 2013, Advanced materials.

[73]  D. Christodoulides,et al.  Parity-time–symmetric microring lasers , 2014, Science.

[74]  Yong-Zhen Huang,et al.  Direct-modulated waveguide-coupled microspiral disk lasers with spatially selective injection for on-chip optical interconnects. , 2014, Optics express.

[75]  M. Z. M. Khan,et al.  Self-assembled InAs/InP quantum dots and quantum dashes: Material structures and devices , 2014 .

[76]  A. Zhukov,et al.  Whispering-gallery mode microcavity quantum-dot lasers , 2014 .

[77]  Alwyn J. Seeds,et al.  1.3-μm InAs/GaAs quantum-dot laser monolithically grown on Si Substrates operating over 100°C , 2014 .

[78]  Jean-Michel Lourtioz,et al.  Compact Semiconductor Lasers , 2014 .

[79]  Y. Wang,et al.  Single-mode laser by parity-time symmetry breaking , 2014, Science.

[80]  Weng W. Chow,et al.  Emission properties of nanolasers during the transition to lasing , 2014, Light: Science & Applications.

[81]  John E. Bowers,et al.  High performance continuous wave 1.3 μm quantum dot lasers on silicon , 2014 .

[82]  Kei May Lau,et al.  InAs/GaAs quantum dots on GaAs-on-V-grooved-Si substrate with high optical quality in the 1.3 μm band , 2015 .

[83]  Alexey E. Zhukov,et al.  Room Temperature Lasing in 1-μm Microdisk Quantum Dot Lasers , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[84]  P. Jin,et al.  Self-assembly of InAs quantum dots on GaAs(001) by molecular beam epitaxy , 2015 .

[85]  Bin Tian,et al.  Room-temperature InP distributed feedback laser array directly grown on silicon , 2015 .

[86]  Marco Fiorentino,et al.  A comb laser-driven DWDM silicon photonic transmitter based on microring modulators. , 2015, Optics express.

[87]  John E. Bowers,et al.  Reliability of InAs/GaAs Quantum Dot Lasers Epitaxially Grown on Silicon , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[88]  John E. Bowers,et al.  Quantum dot lasers for silicon photonics [Invited] , 2015 .

[89]  Amir Arbabi,et al.  Grating integrated single mode microring laser. , 2015, Optics express.

[90]  Alexey E. Zhukov,et al.  Single-Mode Emission From 4–9-μm Microdisk Lasers With Dense Array of InGaAs Quantum Dots , 2015, Journal of Lightwave Technology.

[91]  Yasuhiko Arakawa,et al.  Quantum dot lasers for silicon photonics , 2016, 2016 21st OptoElectronics and Communications Conference (OECC) held jointly with 2016 International Conference on Photonics in Switching (PS).

[92]  Kei May Lau,et al.  Optically pumped 1.3  μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon. , 2016, Optics letters.

[93]  John E. Bowers,et al.  Temperature characteristics of epitaxially grown InAs quantum dot micro-disk lasers on silicon for on-chip light sources , 2016 .

[94]  Wei Li,et al.  Electrically pumped continuous-wave III–V quantum dot lasers on silicon , 2016, Nature Photonics.

[95]  D. Bimberg,et al.  Comparison of dynamic properties of InP/InAs quantum-dot and quantum-dash lasers , 2016 .

[96]  K. Alan Shore Dynamics of quantum dot lasers: effects of optical feedback and external optical injection, by Christian Otto , 2016 .

[97]  John E. Bowers,et al.  Sub-wavelength InAs quantum dot micro-disk lasers epitaxially grown on exact Si (001) substrates , 2016 .

[98]  A. Seeds,et al.  Optimizations of Defect Filter Layers for 1.3-μm InAs/GaAs Quantum-Dot Lasers Monolithically Grown on Si Substrates , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[99]  Y. Bogumilowicz,et al.  Epitaxial growth of antiphase boundary free GaAs layer on 300 mm Si(001) substrate by metalorganic chemical vapour deposition with high mobility , 2016 .

[100]  Kei May Lau,et al.  1.3-μm InAs quantum-dot micro-disk lasers on V-groove patterned and unpatterned (001) silicon. , 2016, Optics express.

[101]  M. Lee,et al.  GaAsP solar cells on GaP/Si with low threading dislocation density , 2016 .

[102]  Kei May Lau,et al.  Epitaxial growth of highly mismatched III-V materials on (001) silicon for electronics and optoelectronics , 2017 .

[103]  Zeyu Zhang,et al.  1.3 μm Submilliamp Threshold Quantum Dot Micro-lasers on Si , 2017 .

[104]  K. Lau,et al.  Monolithically integrated InAs/InGaAs quantum dot photodetectors on silicon substrates. , 2017, Optics express.

[105]  Thierry Baron,et al.  Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates. , 2017, Optics express.

[106]  Christian Schneider,et al.  Electrically Tunable Single-Photon Source Triggered by a Monolithically Integrated Quantum Dot Microlaser , 2017 .

[107]  Alan Y. Liu,et al.  Sub-mA threshold 1.3 μm CW lasing from electrically pumped micro-rings grown on (001) Si , 2017, 2017 Conference on Lasers and Electro-Optics (CLEO).

[108]  Joris Van Campenhout,et al.  Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer , 2017 .

[109]  Jem Jos Haverkort,et al.  Effective Surface Passivation of InP Nanowires by Atomic-Layer-Deposited Al2O3 with POx Interlayer , 2017, Nano letters.

[110]  Alexey E. Zhukov,et al.  Light Outcoupling from Quantum Dot-Based Microdisk Laser via Plasmonic Nanoantenna , 2017 .

[111]  M. Dong,et al.  TM Polarized Microcylinder Laser with Engineered Band of Tensile Strained InGaAsP/InP Quantum Well , 2017, IEEE Journal of Quantum Electronics.

[112]  Kei May Lau,et al.  O-band electrically injected quantum dot micro-ring lasers on on-axis (001) GaP/Si and V-groove Si. , 2017, Optics express.

[113]  Qiang Li,et al.  Quantum dot lasers grown on (001) Si substrate for integration with amorphous Si waveguides , 2017, 2017 Optical Fiber Communications Conference and Exhibition (OFC).

[114]  Geert Morthier,et al.  Novel Light Source Integration Approaches for Silicon Photonics , 2017 .

[115]  John E. Bowers,et al.  High efficiency low threshold current 1.3 μm InAs quantum dot lasers on on-axis (001) GaP/Si , 2017 .

[116]  Kei May Lau,et al.  Continuous-Wave Optically Pumped 1.55 μm InAs/InAlGaAs Quantum Dot Microdisk Lasers Epitaxially Grown on Silicon , 2017 .

[117]  Daisuke Inoue,et al.  Directly modulated 1.3 μm quantum dot lasers epitaxially grown on silicon. , 2018, Optics express.

[118]  John Bowers,et al.  Photonic Integration With Epitaxial III–V on Silicon , 2018, IEEE Journal of Selected Topics in Quantum Electronics.

[119]  J. Bowers,et al.  Low-Threshold Continuous-Wave Operation of Electrically Pumped 1.55 μm InAs Quantum Dash Microring Lasers , 2019, ACS Photonics.

[120]  Zeyu Zhang,et al.  Highly Reliable Low-Threshold InAs Quantum Dot Lasers on On-Axis (001) Si with 87% Injection Efficiency , 2018 .

[121]  Qi Feng,et al.  InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm , 2018, 2018 Asia Communications and Photonics Conference (ACP).

[122]  Qixiang Cheng,et al.  Recent advances in optical technologies for data centers: a review , 2018, Optica.

[123]  J. Bowers,et al.  Quantum dot micro-lasers integrated with photodetectors and optical amplifiers on (001) Si via waveguide coupling , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[124]  J. Bowers,et al.  On-Chip Detection from Directly Modulated Quantum Dot Microring Lasers on Si , 2018, 2018 Progress in Electromagnetics Research Symposium (PIERS-Toyama).

[125]  J. Bowers,et al.  Directly modulated quantum dot lasers on silicon with a milliampere threshold and high temperature stability , 2018, Photonics Research.

[126]  Jiaoqing Pan,et al.  Inclined emitting slotted single-mode laser with 1.7° vertical divergence angle for PIC applications. , 2018, Optics letters.

[127]  Zhou Lu,et al.  Brief Review of Surface Passivation on III-V Semiconductor , 2018 .

[128]  Aleksandar Nesic,et al.  Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding , 2018, Optica.

[129]  Zeyu Zhang,et al.  Effects of modulation p doping in InAs quantum dot lasers on silicon , 2018, Applied Physics Letters.

[130]  Y. Arakawa,et al.  All MBE grown InAs/GaAs quantum dot lasers on on-axis Si (001). , 2018, Optics express.

[131]  J. Bowers,et al.  Intensity and Phase Modulators at 1.55 μm with InAs/InGaAs Quantum Dots Epitaxially Grown on Silicon , 2018, 2018 Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR).

[132]  John E. Bowers,et al.  Perspective: The future of quantum dot photonic integrated circuits , 2018 .

[133]  Niamh Waldron,et al.  How to control defect formation in monolithic III/V hetero-epitaxy on (100) Si? A critical review on current approaches , 2018, Semiconductor Science and Technology.

[134]  J. Bowers,et al.  Low-dark current 10 Gbit/s operation of InAs/InGaAs quantum dot p-i-n photodiode grown on on-axis (001) GaP/Si , 2018, Applied Physics Letters.

[135]  J. Bowers,et al.  Quadruple reduction of threshold current density for microring quantum dot lasers epitaxially grown on (001) Si , 2018, 2018 Conference on Lasers and Electro-Optics (CLEO).

[136]  John E. Bowers,et al.  Realities and Challenges of III-V/Si Integration Technologies , 2019, 2019 Optical Fiber Communications Conference and Exhibition (OFC).

[137]  Zeyu Zhang,et al.  A Review of High-Performance Quantum Dot Lasers on Silicon , 2019, IEEE Journal of Quantum Electronics.

[138]  Kam Sing Wong,et al.  Telecom InP/InGaAs nanolaser array directly grown on (001) silicon-on-insulator. , 2019, Optics letters.

[139]  M. Orenstein,et al.  MOICANA: monolithic cointegration of QD-based InP on SiN as a versatile platform for the demonstration of high-performance and low-cost PIC transmitters , 2019, OPTO.

[140]  You-Shin No Electrically Driven Micro- and Nano-Scale Semiconductor Light Sources , 2019, Applied Sciences.

[141]  J. Bowers,et al.  1.3- $\mu$ m Reflection Insensitive InAs/GaAs Quantum Dot Lasers Directly Grown on Silicon , 2019, IEEE Photonics Technology Letters.

[142]  Bin Zhang,et al.  O-Band and C/L-Band III-V Quantum Dot Lasers Monolithically Grown on Ge and Si Substrate , 2019, Applied Sciences.

[143]  Ashkan Roshan-Zamir,et al.  A Directly Modulated Quantum Dot Microring Laser Transmitter with Integrated CMOS Driver , 2019, 2019 Optical Fiber Communications Conference and Exhibition (OFC).

[144]  Qinghai Song,et al.  Emerging opportunities for ultra-high Q whispering gallery mode microcavities , 2019, Science China Physics, Mechanics & Astronomy.

[145]  John E. Bowers,et al.  High-channel-count 20  GHz passively mode-locked quantum dot laser directly grown on Si with 41  Tbit/s transmission capacity , 2018, Optica.

[146]  Richard Jones,et al.  Heterogeneously Integrated InP\/Silicon Photonics: Fabricating Fully Functional Transceivers , 2019, IEEE Nanotechnology Magazine.