Delivery of a Genetically Marked Serratia AS1 to Medically Important Arthropods for Use in RNAi and Paratransgenic Control Strategies

[1]  M. Abai,et al.  Dynamics of Transgenic Enterobacter cloacae Expressing Green Fluorescent Protein Defensin (GFP-D) in Anopheles stephensi Under Laboratory Condition , 2017, Journal of arthropod-borne diseases.

[2]  P. Agre,et al.  Driving mosquito refractoriness to Plasmodium falciparum with engineered symbiotic bacteria , 2017, Science.

[3]  S. Doha,et al.  EFFECT OF DIFFERENT BLOOD SOURCES ON THE FEEDING TIME OF SAND FLY, PHLEBOTOMUS PAPATASI. , 2015, Journal of the Egyptian Society of Parasitology.

[4]  D. Severson,et al.  siRNA-Mediated Silencing of doublesex during Female Development of the Dengue Vector Mosquito Aedes aegypti , 2015, PLoS neglected tropical diseases.

[5]  M. Stanko,et al.  Host-feeding behaviour of Dermacentor reticulatus and Dermacentor marginatus in mono-specific and inter-specific infestations , 2015, Parasites & Vectors.

[6]  P. Pennington,et al.  Genetically Modifying the Insect Gut Microbiota to Control Chagas Disease Vectors through Systemic RNAi , 2015, PLoS neglected tropical diseases.

[7]  M. Oshaghi,et al.  Aerobic bacterial flora of biotic and abiotic compartments of a hyperendemic Zoonotic Cutaneous Leishmaniasis (ZCL) focus , 2015, Parasites & Vectors.

[8]  M. Oshaghi,et al.  Malpighian tubules are important determinants of Pseudomonas transstadial transmission and longtime persistence in Anopheles stephensi , 2015, Parasites & Vectors.

[9]  M. Oshaghi,et al.  Isolation and identification of culturable bacteria from wild Anopheles culicifacies, a first step in a paratransgenesis approach , 2014, Parasites & Vectors.

[10]  Jie Cao,et al.  The Midgut Bacterial Flora of Laboratory-Reared Hard Ticks, Haemaphysalis longicornis, Hyalomma asiaticum, and Rhipicephalus haemaphysaloides , 2014 .

[11]  S. Lata,et al.  Salivary glands harbor more diverse microbial communities than gut in Anopheles culicifacies , 2014, Parasites & Vectors.

[12]  T. Fukatsu,et al.  Intrasperm vertical symbiont transmission , 2014, Proceedings of the National Academy of Sciences.

[13]  M. Oshaghi,et al.  Aerobic Microbial Community of Insectary Population of Phlebotomus papatasi , 2013, Journal of arthropod-borne diseases.

[14]  O. Reynolds,et al.  Carbohydrate Diet and Reproductive Performance of a Fruit Fly Parasitoid, Diachasmimorpha tryoni , 2013, Journal of insect science.

[15]  S. Whyard,et al.  Oral Delivery of Double-Stranded RNA in Larvae of the Yellow Fever Mosquito, Aedes aegypti: Implications for Pest Mosquito Control , 2013, Journal of insect science.

[16]  M. Oshaghi,et al.  Escherichia coli expressing a green fluorescent protein (GFP) in Anopheles stephensi: a preliminary model for paratransgenesis , 2013, Symbiosis.

[17]  O. Christiaens,et al.  Delivery of dsRNA for RNAi in insects: an overview and future directions , 2013, Insect science.

[18]  A. Ghosh,et al.  Fighting malaria with engineered symbiotic bacteria from vector mosquitoes , 2012, Proceedings of the National Academy of Sciences.

[19]  P. Hammerstein,et al.  Still a Host of Hosts for Wolbachia: Analysis of Recent Data Suggests That 40% of Terrestrial Arthropod Species Are Infected , 2012, PloS one.

[20]  H. Shahbazkia,et al.  Midgut Microbiota of the Malaria Mosquito Vector Anopheles gambiae and Interactions with Plasmodium falciparum Infection , 2012, PLoS pathogens.

[21]  A. Enayati,et al.  Identification of bacterial microflora in the midgut of the larvae and adult of wild caught Anopheles stephensi: a step toward finding suitable paratransgenesis candidates. , 2012, Acta tropica.

[22]  Ravi Durvasula,et al.  Paratransgenic Control of Vector Borne Diseases , 2011, International journal of biological sciences.

[23]  N. Kremer,et al.  Vertical and horizontal transmission drive bacterial invasion , 2011, Molecular ecology.

[24]  D. Daffonchio,et al.  Mosquito symbioses: from basic research to the paratransgenic control of mosquito‐borne diseases , 2011 .

[25]  Víctor de Lorenzo,et al.  pBAM1: an all-synthetic genetic tool for analysis and construction of complex bacterial phenotypes , 2011, BMC Microbiology.

[26]  K. Zhu,et al.  Transgenesis and paratransgenesis to control insect-borne diseases: current status and future challenges. , 2010, Parasitology international.

[27]  Q. Xie,et al.  Developmental Control of a Lepidopteran Pest Spodoptera exigua by Ingestion of Bacteria Expressing dsRNA of a Non-Midgut Gene , 2009, PloS one.

[28]  R. Bhatnagar,et al.  Bacterial diversity analysis of larvae and adult midgut microflora using culture-dependent and culture-independent methods in lab-reared and field-collected Anopheles stephensi-an Asian malarial vector , 2009, BMC Microbiology.

[29]  M. Lehane,et al.  Prolonged gene knockdown in the tsetse fly Glossina by feeding double stranded RNA , 2009, Insect molecular biology.

[30]  D. Daffonchio,et al.  Paternal transmission of symbiotic bacteria in malaria vectors , 2008, Current Biology.

[31]  A. Borg-Karlson,et al.  Transstadial and horizontal transfer of bacteria within a colony of Anopheles gambiae (Diptera: Culicidae) and oviposition response to bacteria-containing water. , 2008, Acta tropica.

[32]  B. Lemaître,et al.  Bacterial strategies to overcome insect defences , 2008, Nature Reviews Microbiology.

[33]  M. A. Berbert-Molina,et al.  First isolation of microorganisms from the gut diverticulum of Aedes aegypti (Diptera: Culicidae): new perspectives for an insect-bacteria association. , 2007, Memorias do Instituto Oswaldo Cruz.

[34]  T. Fukatsu,et al.  How many symbionts are provided by mothers, acquired by offspring, and needed for successful vertical transmission in an obligate insect–bacterium mutualism? , 2007, Molecular ecology.

[35]  M. Levin,et al.  Life Cycles of Seven Ixodid Tick Species (Acari: Ixodidae) Under Standardized Laboratory Conditions , 2007, Journal of medical entomology.

[36]  L. Kramer,et al.  Bacteria of the genus Asaia stably associate with Anopheles stephensi, an Asian malarial mosquito vector , 2007, Proceedings of the National Academy of Sciences.

[37]  G. Nicholson Fighting the global pest problem: preface to the special Toxicon issue on insecticidal toxins and their potential for insect pest control. , 2007, Toxicon : official journal of the International Society on Toxinology.

[38]  A. Enayati,et al.  Various mechanisms responsible for permethrin metabolic resistance in seven field-collected strains of the German cockroach from Iran, Blattella germanica (L.) (Dictyoptera: Blattellidae) , 2007 .

[39]  J. Lindh,et al.  Re-introducing bacteria in mosquitoes--a method for determination of mosquito feeding preferences based on coloured sugar solutions. , 2006, Acta tropica.

[40]  R. Araujo,et al.  RNA interference of the salivary gland nitrophorin 2 in the triatomine bug Rhodnius prolixus (Hemiptera: Reduviidae) by dsRNA ingestion or injection. , 2006, Insect biochemistry and molecular biology.

[41]  P. Volf,et al.  Sand fly saliva: effects on host immune response and Leishmania transmission. , 2006, Folia parasitologica.

[42]  N. Moran,et al.  Sexual acquisition of beneficial symbionts in aphids , 2006, Proceedings of the National Academy of Sciences.

[43]  J. Lindh,et al.  16S rRNA Gene-Based Identification of Midgut Bacteria from Field-Caught Anopheles gambiae Sensu Lato and A. funestus Mosquitoes Reveals New Species Related to Known Insect Symbionts , 2005, Applied and Environmental Microbiology.

[44]  M. Riehle,et al.  Using bacteria to express and display anti-parasite molecules in mosquitoes: current and future strategies. , 2005, Insect biochemistry and molecular biology.

[45]  R. Knell,et al.  Sexually transmitted diseases of insects: distribution, evolution, ecology and host behaviour , 2004, Biological reviews of the Cambridge Philosophical Society.

[46]  J. Hernández-Ávila,et al.  Bacteria in Midguts of Field-Collected Anopheles albimanus Block Plasmodium vivax Sporogonic Development , 2003, Journal of medical entomology.

[47]  John Vontas,et al.  An Overview of Insecticide Resistance , 2002, Science.

[48]  Phillip D. Zamore,et al.  RNA interference: listening to the sound of silence , 2001, Nature Structural Biology.

[49]  S. Yoshida,et al.  Bacteria expressing single-chain immunotoxin inhibit malaria parasite development in mosquitoes. , 2001, Molecular and biochemical parasitology.

[50]  S. Kamhawi The biological and immunomodulatory properties of sand fly saliva and its role in the establishment of Leishmania infections. , 2000, Microbes and infection.

[51]  J. Ribeiro Blood‐feeding in mosquitoes: probing time and salivary gland anti‐haemostatic activities in representatives of three genera (Aedes, Anopheles, Culex) , 2000, Medical and veterinary entomology.

[52]  C. Beard,et al.  Prevention of insect-borne disease: an approach using transgenic symbiotic bacteria. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[53]  J. Beier,et al.  Bacterial population dynamics in three anopheline species: the impact on Plasmodium sporogonic development. , 1996, The American journal of tropical medicine and hygiene.

[54]  J. Nataro,et al.  Plasmodium falciparum: inhibition of sporogonic development in Anopheles stephensi by gram-negative bacteria. , 1993, Experimental parasitology.

[55]  S. Brown,et al.  Blood leukocyte response in hosts parasitized by the hematophagous arthropods Triatoma protracta and Lutzomyia longipalpis. , 1984, The American journal of tropical medicine and hygiene.

[56]  R. Tesh,et al.  A simple technique for mass rearing Lutzomyia longipalpis and Phlebotomus papatasi (Diptera: Psychodidae) in the laboratory. , 1983, Journal of medical entomology.

[57]  P. Ready,et al.  Leishmania in phlebotomid sandflies - IV. The transmission of Leishmania mexicana amazonensis to hamsters by the bite of experimentally infected Lutzomyia longipalpis , 1977, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[58]  M. Wéry,et al.  [Role of Pseudomonas in the sporogenesis of the hematozoon of malaria in the mosquito]. , 1966, Bulletin de la Societe de pathologie exotique et de ses filiales.

[59]  M. Lavoipierre Feeding Mechanism of Blood-sucking Arthropods , 1965, Nature.

[60]  R. Novak,et al.  Thorsellia anophelis is the dominant bacterium in a Kenyan population of adult Anopheles gambiae mosquitoes , 2008, The ISME Journal.

[61]  G. Attardo,et al.  Paratransgenesis applied for control of tsetse transmitted sleeping sickness. , 2008, Advances in experimental medicine and biology.

[62]  P. Nuttall,et al.  Dynamics of infection in tick vectors and at the tick-host interface. , 2003, Advances in virus research.

[63]  K. Lerdthusnee,et al.  Meconial Peritrophic Membranes and the Fate of Midgut Bacteria During Mosquito (Diptera: Culicidae) Metamorphosis , 2001, Journal of medical entomology.

[64]  D. Pimentel,et al.  Environmental Risks of Pesticides Versus Genetic Engineering for Agricultural Pest Control , 2000 .

[65]  R. Beach,et al.  Cutaneous leishmaniasis in Kenya: transmission of Leishmania major to man by the bite of a naturally infected Phlebotomus duboscqi. , 1984, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[66]  W. S. Patton,et al.  On certain haematophagous species of the genus Musca, with descriptions of two new species. , 1913 .