Continuous rotation invariant local descriptors for texton dictionary-based texture classification

Texton dictionary-based texture representation approaches have been proven to be effective for texture classification. We propose two types of local descriptors based on Gaussian derivatives filters, both of them have the property of continuous rotation invariance. The first descriptor directly uses the maximum of the filter responses named continuous maximum responses (CMR). The second descriptor rectifies the filter responses to calculate principal curvatures (PC) of the image surface. The texton dictionary is learned from the training images by clustering the local descriptors, and the representation of each image is the frequency histogram of the textons. The classification results compared with some other popular methods on the CUReT, KTH-TIPS and KTH-TIPS2-a datasets show that representation based on CMR achieves best classification result on the CUReT dataset. The representation based on PC achieves the best classification results on the KTH-TIPS and KTH-TIPS2-a datasets, and the classification performance is robust on different datasets. The experiments of rotation invariant analysis implemented on the Brodatz album illustrate that the CMR descriptor has good inter-class distinguish ability and PC descriptor has strong intra-class congregate ability. The results demonstrate that the proposed local descriptors achieve remarkable performance to classify the rotated textures.

[1]  Thomas G. Dietterich,et al.  Principal Curvature-Based Region Detector for Object Recognition , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[2]  Kristin J. Dana,et al.  3D Texture Recognition Using Bidirectional Feature Histograms , 2004, International Journal of Computer Vision.

[3]  B. S. Manjunath,et al.  Rotation-invariant texture classification using a complete space-frequency model , 1999, IEEE Trans. Image Process..

[4]  Cordelia Schmid,et al.  Constructing models for content-based image retrieval , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[5]  S. Zucker,et al.  Differential Geometry from the Frenet Point of View: Boundary Detection, Stereo, Texture and Color , 2006, Handbook of Mathematical Models in Computer Vision.

[6]  F. G. Peet,et al.  Surface Curvature as a Measure of Image Texture , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Phil Brodatz,et al.  Textures: A Photographic Album for Artists and Designers , 1966 .

[8]  Arivazhagan Selvaraj,et al.  Texture classification using Gabor wavelets based rotation invariant features , 2006, Pattern Recognit. Lett..

[9]  Anil K. Jain Data clustering: 50 years beyond K-means , 2010, Pattern Recognit. Lett..

[10]  Matti Pietikäinen,et al.  IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2009, TPAMI-2008-09-0620 1 WLD: A Robust Local Image Descriptor , 2022 .

[11]  Anil K. Jain,et al.  A spatial filtering approach to texture analysis , 1985, Pattern Recognit. Lett..

[12]  D. Chetverikov EXPERIMENTS IN THE ROTATION-INVARIANT TEXTURE DISCRIMINATION USING ANISOTROPY FEATURES. , 1982 .

[13]  Shree K. Nayar,et al.  Reflectance and texture of real-world surfaces , 1999, TOGS.

[14]  Byung-Woo Hong,et al.  Locally Rotation, Contrast, and Scale Invariant Descriptors for Texture Analysis , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[17]  Hamid Soltanian-Zadeh,et al.  Radon transform orientation estimation for rotation invariant texture analysis , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Chi-Man Pun,et al.  Log-Polar Wavelet Energy Signatures for Rotation and Scale Invariant Texture Classification , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  F. S. Cohen,et al.  Classification of Rotated and Scaled Textured Images Using Gaussian Markov Random Field Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Prabir Kumar Biswas,et al.  Rotation and scale invariant texture features using discrete wavelet packet transform , 2003, Pattern Recognit. Lett..

[22]  A. Kundu,et al.  Rotation and Gray Scale Transform Invariant Texture Identification using Wavelet Decomposition and Hidden Markov Model , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Barbara Caputo,et al.  Class-Specific Material Categorisation , 2005, ICCV.

[24]  R. Porter,et al.  Robust rotation-invariant texture classification: wavelet, Gabor filter and GMRF based schemes , 1997 .

[25]  Alessandro Neri,et al.  Robust rotation-invariant texture classification using a model based approach , 2004, IEEE Transactions on Image Processing.

[26]  Cordelia Schmid,et al.  A sparse texture representation using local affine regions , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Jitendra Malik,et al.  Representing and Recognizing the Visual Appearance of Materials using Three-dimensional Textons , 2001, International Journal of Computer Vision.

[28]  Cordelia Schmid,et al.  Local Features and Kernels for Classification of Texture and Object Categories: A Comprehensive Study , 2006, CVPR Workshops.

[29]  David G. Stork,et al.  Pattern Classification , 1973 .

[30]  Mario Fritz,et al.  On the Significance of Real-World Conditions for Material Classification , 2004, ECCV.

[31]  I. Rentschler,et al.  Intrinsic two-dimensional features as textons. , 1998, Journal of the Optical Society of America. A, Optics, image science, and vision.

[32]  Andrew Zisserman,et al.  A Statistical Approach to Texture Classification from Single Images , 2005, International Journal of Computer Vision.

[33]  Matti Pietikäinen,et al.  Image description using joint distribution of filter bank responses , 2009, Pattern Recognit. Lett..

[34]  Quan Pan,et al.  Rotation and scaling invariant texture classification based on Radon transform and multiscale analysis , 2006, Pattern Recognit. Lett..

[35]  Mario Fritz,et al.  Classifying materials in the real world , 2010, Image Vis. Comput..

[36]  Larry S. Davis,et al.  Texture Analysis Using Generalized Co-Occurrence Matrices , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Larry S. Davis,et al.  Polarograms: A new tool for image texture analysis , 1979, Pattern Recognit..

[38]  Rangasami L. Kashyap,et al.  A Model-Based Method for Rotation Invariant Texture Classification , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[39]  Andrew Zisserman,et al.  A Statistical Approach to Material Classification Using Image Patch Exemplars , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Hamid Soltanian-Zadeh,et al.  Rotation-invariant multiresolution texture analysis using Radon and wavelet transforms , 2005, IEEE Transactions on Image Processing.

[41]  Manfredo P. do Carmo,et al.  Differential geometry of curves and surfaces , 1976 .

[42]  Baltasar Beferull-Lozano,et al.  Rotation-Invariant Texture Retrieval via Signature Alignment Based on Steerable Sub-Gaussian Modeling , 2008, IEEE Transactions on Image Processing.