Multigrid error bounds for moments of arbitrary order

We consider estimates of worst-case bounds for quantization errors in calculating moments of arbitrary order. New estimates are provided which are based on Huxley's theorem and a general definition of families of sets, propagating an estimate for zero-order moments towards estimates for moments of arbitrary order.

[1]  Marie Ennemond Camille Jordan Cours d'analyse , 1887 .

[2]  M. Huxley EXPONENTIAL SUMS AND LATTICE POINTS II , 1993 .

[3]  Roland T. Chin,et al.  On digital approximation of moment invariants , 1986, Computer Vision Graphics and Image Processing.

[4]  Herbert Süße,et al.  Adaptive Modelle und Invarianten für zweidimensionale Bilder , 1995, Berichte aus der Informatik.

[5]  M. Huxley Exponential sums and lattice points III , 2003 .

[6]  Natasa Sladoje,et al.  Efficiency of Characterizing Ellipses and Ellipsoids by Discrete Moments , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Behrooz Kamgar-Parsi,et al.  Evaluation of Quantization Error in Computer Vision , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Henryk Iwaniec,et al.  On the divisor and circle problems , 1988 .

[9]  David G. Kendall,et al.  ON THE NUMBER OF LATTICE POINTS INSIDE A RANDOM OVAL , 1948 .

[10]  Reinhard Klette,et al.  Digital Approximation of Moments of Convex Regions , 1999, Graph. Model. Image Process..

[11]  M. N. Huxley The area within a curve , 1987 .

[12]  Behrooz Kamgar-Parsi,et al.  Evaluation of quantization error in computer vision , 1988, Proceedings CVPR '88: The Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  Rangachar Kasturi,et al.  Machine vision , 1995 .