Scale-invariance in local heat kernel descriptors without scale selection and normalization

Today, only a small fraction of Internet repositories of geometric data is accessible through text search. Fast growth of these repositories makes content-based retrieval one of the next grand challenges in search and organization of such information. Particularly difficult is the problem of \emph{shape retrieval}, as geometric shapes manifest a vast variability due to different scale, orientation, non-rigid deformations, missing data, and also appear in a variety of different formats and representations. One of the biggest challenges in non-rigid shape retrieval and comparison is the design of a shape descriptor that would maintain invariance under a wide class of transformations the shape can undergo. Recently, heat kernel signature was introduced as an intrinsic local shape descriptor based on diffusion scale-space analysis. In this paper, we develop a scale-invariant version of the heat kernel descriptor. Our construction is based on a logarithmically sampled scale-space in which shape scaling corresponds, up to a multiplicative constant, to a translation. This translation is undone using the magnitude of the Fourier transform. The proposed scale-invariant local descriptors can be used in the bag-of-features framework for shape retrieval in the presence of transformations such as isometric deformations, missing data, topological noise, and global and local scaling. We get significant performance improvement over state-of-the-art algorithms on recently established non-rigid shape retrieval benchmarks.

[1]  Guillermo Sapiro,et al.  A Theoretical and Computational Framework for Isometry Invariant Recognition of Point Cloud Data , 2005, Found. Comput. Math..

[2]  Iasonas Kokkinos,et al.  Scale invariance without scale selection , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[3]  M. Maggioni,et al.  Manifold parametrizations by eigenfunctions of the Laplacian and heat kernels , 2008, Proceedings of the National Academy of Sciences.

[4]  Eitan Grinspun,et al.  Discrete laplace operators: no free lunch , 2007, Symposium on Geometry Processing.

[5]  A. Bronstein,et al.  Shape Google : a computer vision approach to invariant shape retrieval , 2009 .

[6]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[7]  Raif M. Rustamov,et al.  Laplace-Beltrami eigenfunctions for deformation invariant shape representation , 2007 .

[8]  D. Casasent,et al.  Position, rotation, and scale invariant optical correlation. , 1976, Applied optics.

[9]  Niklas Peinecke,et al.  Laplace-spectra as fingerprints for shape matching , 2005, SPM '05.

[10]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[11]  Andrea Fusiello,et al.  Visual Vocabulary Signature for 3D Object Retrieval and Partial Matching , 2009, 3DOR@Eurographics.

[12]  Alfred M. Bruckstein,et al.  Diffusions and Confusions in Signal and Image Processing , 2001, Journal of Mathematical Imaging and Vision.

[13]  Vincent Lepetit,et al.  A fast local descriptor for dense matching , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[14]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[15]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[16]  Guillermo Sapiro,et al.  A Gromov-Hausdorff Framework with Diffusion Geometry for Topologically-Robust Non-rigid Shape Matching , 2010, International Journal of Computer Vision.

[17]  Ron Kimmel,et al.  Generalized multidimensional scaling: A framework for isometry-invariant partial surface matching , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Christopher Hunt,et al.  Notes on the OpenSURF Library , 2009 .

[19]  Ulrich Pinkall,et al.  Computing Discrete Minimal Surfaces and Their Conjugates , 1993, Exp. Math..

[20]  George Wolberg,et al.  Image registration using log-polar mappings for recovery of large-scale similarity and projective transformations , 2005, IEEE Transactions on Image Processing.

[21]  Ron Kimmel,et al.  Bending invariant representations for surfaces , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[22]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[23]  Michael Elad,et al.  Content Based Retrieval of VRML Objects - An Iterative and Interactive Approach , 2001, Eurographics Multimedia Workshop.

[24]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[25]  Markus H. Gross,et al.  Multi‐scale Feature Extraction on Point‐Sampled Surfaces , 2003, Comput. Graph. Forum.

[26]  Mikhail Belkin,et al.  Constructing Laplace operator from point clouds in Rd , 2009, SODA.

[27]  Tsuhan Chen,et al.  Efficient feature extraction for 2D/3D objects in mesh representation , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[28]  Daniela Giorgi,et al.  Discrete Laplace-Beltrami operators for shape analysis and segmentation , 2009, Comput. Graph..

[29]  Michael Elad,et al.  Content based retrieval of VRML objects: an iterative and interactive approach , 2002 .

[30]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[31]  Leonidas J. Guibas,et al.  Probabilistic fingerprints for shapes , 2006, SGP '06.

[32]  R. Horaud,et al.  Surface feature detection and description with applications to mesh matching , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[33]  Haibin Ling,et al.  Using the inner-distance for classification of articulated shapes , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[34]  Michael Isard,et al.  Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[35]  Remco C. Veltkamp,et al.  A survey of content based 3D shape retrieval methods , 2004, Proceedings Shape Modeling Applications, 2004..

[36]  Yi Liu,et al.  Shape Topics: A Compact Representation and New Algorithms for 3D Partial Shape Retrieval , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[37]  Craig Gotsman,et al.  Characterizing Shape Using Conformal Factors , 2008, 3DOR@Eurographics.

[38]  Szymon Rusinkiewicz,et al.  Rotation Invariant Spherical Harmonic Representation of 3D Shape Descriptors , 2003, Symposium on Geometry Processing.

[39]  Ilan Shimshoni,et al.  On edge detection on surfaces , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[40]  Andrew E. Johnson,et al.  Using Spin Images for Efficient Object Recognition in Cluttered 3D Scenes , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[42]  Bruno Lévy,et al.  Laplace-Beltrami Eigenfunctions Towards an Algorithm That "Understands" Geometry , 2006, IEEE International Conference on Shape Modeling and Applications 2006 (SMI'06).

[43]  Leonidas J. Guibas,et al.  Robust global registration , 2005, SGP '05.

[44]  Alfred M. Bruckstein,et al.  Analysis of Two-Dimensional Non-Rigid Shapes , 2008, International Journal of Computer Vision.

[45]  Guillermo Sapiro,et al.  Three-dimensional point cloud recognition via distributions of geometric distances , 2008, 2008 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.