Observed Vegetation–Climate Feedbacks in the United States*

Abstract Observed vegetation feedbacks on temperature and precipitation are assessed across the United States using satellite-based fraction of photosynthetically active radiation (FPAR) and monthly climate data for the period of 1982–2000. This study represents the first attempt to spatially quantify the observed local impact of vegetation on temperature and precipitation over the United States for all months and by season. Lead–lag correlations and feedback parameters are computed to determine the regions where vegetation substantially impacts the atmosphere and to quantify this forcing. Temperature imposes a significant instantaneous forcing on FPAR, while precipitation's impact on FPAR is greatest at one-month lead, particularly across the prairie. An increase in vegetation raises the surface air temperature by absorbing additional radiation and, in some cases, masking the high albedo of snow cover. Vegetation generally exhibits a positive forcing on temperature, strongest in spring and particularly a...

[1]  C. Tucker,et al.  Interannual variations in satellite-sensed vegetation index data from 1981 to 1991 , 1998 .

[2]  D. Stern,et al.  Evidence for human influence on climate from hemispheric temperature relations , 1997, Nature.

[3]  C. Granger Investigating causal relations by econometric models and cross-spectral methods , 1969 .

[4]  J. Kutzbach,et al.  Coupled atmosphere-ocean-vegetation simulations for modern and mid-Holocene climates: role of extratropical vegetation cover feedbacks , 2005 .

[5]  Ranga B. Myneni,et al.  The effect of vegetation on surface temperature: A statistical analysis of NDVI and climate data , 2003 .

[6]  K. Fraedrich,et al.  A Green Planet Versus a Desert World: Estimating the Maximum Effect of Vegetation on the Land Surface Climate , 2000 .

[7]  Weiyue Li,et al.  Comparison of methods of snow cover mapping by analysing the solar spectrum of satellite remote sensing data in China , 2003 .

[8]  C. Frankignoul,et al.  Observed Impact of Atlantic SST Anomalies on the North Atlantic Oscillation , 2002 .

[9]  K. E. Moore,et al.  Climatic Consequences of Leaf Presence in the Eastern United States , 2001 .

[10]  Mark D. Schwartz,et al.  Phenology and Springtime Surface-Layer Change , 1992 .

[11]  F. Woodward Climate and plant distribution , 1987 .

[12]  G. Tucker Changes of Climate , 1963, Nature.

[13]  Claude Frankignoul,et al.  Air–Sea Feedback in the North Atlantic and Surface Boundary Conditions for Ocean Models , 1998 .

[14]  Victor Brovkin,et al.  Climate-vegetation interaction , 2002 .

[15]  F. Woodward,et al.  Global climate and the distribution of plant biomes. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[16]  Compton J. Tucker,et al.  Sensitivity of Climate to Changes in NDVI , 2000 .

[17]  P. Braconnot,et al.  Synergistic feedbacks between ocean and vegetation on mid- and high-latitude climates during the mid-Holocene , 2004 .

[18]  G. Collatz,et al.  Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: a model that includes a laminar boundary layer , 1991 .

[19]  C. Willmott,et al.  CLIMATOLOGICALLY AIDED INTERPOLATION (CAI) OF TERRESTRIAL AIR TEMPERATURE , 1995 .

[20]  K. Hasselmann,et al.  Stochastic climate models , Part I 1 Application to sea-surface temperature anomalies and thermocline variability , 2010 .

[21]  P. K. Snyder,et al.  Evaluating the influence of different vegetation biomes on the global climate , 2004 .

[22]  A. Huete A soil-adjusted vegetation index (SAVI) , 1988 .

[23]  R. Dickinson,et al.  Comparison of seasonal and spatial variations of leaf area index and fraction of absorbed photosynthetically active radiation from Moderate Resolution Imaging Spectroradiometer (MODIS) and Common Land Model , 2004 .

[24]  D. White,et al.  Leaf water relations and stomatal behavior of four allopatric Eucalyptus species planted in Mediterranean southwestern Australia. , 2000, Tree physiology.

[25]  P. Xie,et al.  Global Precipitation: A 17-Year Monthly Analysis Based on Gauge Observations, Satellite Estimates, and Numerical Model Outputs , 1997 .

[26]  John E. Kutzbach,et al.  Assessing Global Vegetation–Climate Feedbacks from Observations* , 2006 .

[27]  M. D. Schwartz,et al.  Spring phenology : nature's experiment to detect the effect of Green-up on surface maximum temperatures , 1990 .

[28]  R. Reynolds,et al.  The NCEP/NCAR 40-Year Reanalysis Project , 1996, Renewable Energy.

[29]  Thomas R. Loveland,et al.  The IGBP-DIS global 1 km land cover data set , 1997 .

[30]  David J. Stensrud,et al.  The Impact of Oklahoma's Winter Wheat Belt on the Mesoscale Environment , 2004 .

[31]  Ranga B. Myneni,et al.  Relation between interannual variations in satellite measures of northern forest greenness and climate between 1982 and 1999 , 2003 .

[32]  Kevin P. Price,et al.  Spatial patterns of NDVI in response to precipitation and temperature in the central Great Plains , 2001 .

[33]  N. Ramankutty,et al.  Characterizing patterns of global land use: An analysis of global croplands data , 1998 .

[34]  Umberto Triacca,et al.  On the use of Granger causality to investigate the human influence on climate , 2001 .

[35]  Roger A. Pielke,et al.  Interactions between the atmosphere and terrestrial ecosystems: influence on weather and climate , 1998 .

[36]  D. Lüthi,et al.  Climate impacts of European‐scale anthropogenic vegetation changes: A sensitivity study using a regional climate model , 2001 .

[37]  F. A. Bazzaz,et al.  Plant life in a CO2 - rich world , 1992 .

[38]  D. Lettenmaier,et al.  A Long-Term Hydrologically Based Dataset of Land Surface Fluxes and States for the Conterminous United States* , 2002 .

[39]  A. Knapp,et al.  Variation among biomes in temporal dynamics of aboveground primary production. , 2001, Science.

[40]  J. Shukla,et al.  Influence of land surface roughness on atmospheric circulation and precipitation - A sensitivity study with a general circulation model , 1988 .

[41]  G. Bonan,et al.  Soil feedback drives the mid-Holocene North African monsoon northward in fully coupled CCSM2 simulations with a dynamic vegetation model , 2004 .

[42]  Ranga B. Myneni,et al.  Estimation of global leaf area index and absorbed par using radiative transfer models , 1997, IEEE Trans. Geosci. Remote. Sens..

[43]  J. Townshend,et al.  Continuous fields of vegetation characteristics at the global scale at 1‐km resolution , 1999 .

[44]  Lixin Wu,et al.  Atmospheric Response to North Pacific SST: The Role of Ocean-Atmosphere Coupling* , 2004 .

[45]  Piers J. Sellers,et al.  Amazonian Deforestation and Regional Climate Change , 1991 .

[46]  Mark Z. Jacobson,et al.  The Short-Term Cooling but Long-Term Global Warming Due to Biomass Burning , 2004 .

[47]  W. Dong,et al.  The influence of vegetation cover on summer precipitation in China: A statistical analysis of NDVI and climate data , 2003 .

[48]  J. Janowiak,et al.  The Global Precipitation Climatology Project (GPCP) combined precipitation dataset , 1997 .

[49]  S. Flatté,et al.  Intensity images and statistics from numerical simulation of wave propagation in 3-D random media. , 1988, Applied optics.

[50]  Alan K. Betts,et al.  Albedo over the boreal forest , 1997 .

[51]  H. Drange,et al.  An intercomparison between the surface heat flux feedback in five coupled models, COADS and the NCEP reanalysis , 2004 .

[52]  J. Shukla,et al.  Influence of Land-Surface Evapotranspiration on the Earth's Climate , 1982, Science.

[53]  R. DeFries,et al.  Interannual variability and decadal trend of global fractional vegetation cover from 1982 to 2000 , 2003 .

[54]  R. Dickinson,et al.  Time Scales of Layered Soil Moisture Memory in the Context ofLand–Atmosphere Interaction , 2004 .

[55]  K. Price,et al.  Temporal responses of NDVI to precipitation and temperature in the central Great Plains, USA , 2003 .

[56]  H. Jones,et al.  Plants and Microclimate. , 1985 .

[57]  A. Henderson‐sellers,et al.  Sensitivity of global climate model simulations to increased stomatal resistance and CO2 increases , 1995 .

[58]  P. Jarvis,et al.  The Direct Effects of Increase in the Global Atmospheric CO2 Concentration on Natural and Commercial Temperate Trees and Forests , 1989 .

[59]  C. F. Lee,et al.  Characterization of rainfall-induced landslides , 2003 .

[60]  C. Tucker,et al.  Global Interannual Variations in Sea Surface Temperature and Land Surface Vegetation, Air Temperature, and Precipitation , 2001 .

[61]  Christine A. O'Neill,et al.  Effects of Aerosol from Biomass Burning on the Global Radiation Budget , 1992, Science.

[62]  Petoukhov,et al.  The influence of vegetation-atmosphere-ocean interaction on climate during the mid-holocene , 1998, Science.

[63]  K. Nadelhoffer,et al.  EFFECTS OF TEMPERATURE AND SUBSTRATE QUALITY ON ELEMENT MINERALIZATION IN SIX ARCTIC SOILS , 1991 .

[64]  C. Granger Investigating Causal Relations by Econometric Models and Cross-Spectral Methods , 1969 .

[65]  David A. Robinson,et al.  Maximum Surface Albedo of Seasonally Snow-Covered Lands in the Northern Hemisphere. , 1985 .

[66]  D. Hartmann Global Physical Climatology , 1994 .

[67]  David Pollard,et al.  Use of a land-surface-transfer scheme (LSX) in a global climate model: the response to doubling stomatal resistance , 1995 .

[68]  Limin Yang,et al.  Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR data , 2000 .

[69]  Y. Yamaguchi,et al.  Global correlation analysis for NDVI and climatic variables and NDVI trends: 1982-1990 , 2002 .

[70]  R. Bryson Air Masses, Streamlines and the Boreal Forest , 1966 .

[71]  C. Tucker,et al.  A Global 9-yr Biophysical Land Surface Dataset from NOAA AVHRR Data , 2000 .

[72]  H. Storch,et al.  Statistical Analysis in Climate Research , 2000 .

[73]  Emil L. Smith THE INFLUENCE OF LIGHT AND CARBON DIOXIDE ON PHOTOSYNTHESIS , 1937, The Journal of general physiology.

[74]  John E. Walsh,et al.  Influences of snow cover and soil moisture on monthly air temperature , 1985 .

[75]  P. A. Schultz,et al.  Global correlation of temperature, NDVI and precipitation , 1993 .

[76]  Robert Jacob,et al.  Simulated and Observed Preindustrial to Modern Vegetation and Climate Changes , 2005 .

[77]  J. W. Brown,et al.  Exact Rayleigh scattering calculations for use with the Nimbus-7 Coastal Zone Color Scanner. , 1988, Applied optics.

[78]  S. Sitch,et al.  The role of fire disturbance for global vegetation dynamics: coupling fire into a Dynamic Global Vegetation Model , 2008 .

[79]  C. Frankignoul,et al.  The surface heat flux feedback. Part I: estimates from observations in the Atlantic and the North Pacific , 2002 .

[80]  David Pollard,et al.  Coupling dynamic models of climate and vegetation , 1998 .

[81]  Ranga B. Myneni,et al.  Effect of orbital drift and sensor changes on the time series of AVHRR vegetation index data , 2000, IEEE Trans. Geosci. Remote. Sens..

[82]  M. Budyko,et al.  Climate and life , 1975 .

[83]  J. Kutzbach,et al.  Vegetation and soil feedbacks on the response of the African monsoon to orbital forcing in the early to middle Holocene , 1996, Nature.

[84]  Gordon B. Bonan,et al.  Ecological Climatology: Concepts and Applications , 2002 .

[85]  J. Townshend,et al.  A new global 1‐km dataset of percentage tree cover derived from remote sensing , 2000 .

[86]  G. Bonan,et al.  Effects of boreal forest vegetation on global climate , 1992, Nature.

[87]  M. D. Schwartz Examining the Spring Discontinuity in Daily Temperature Ranges , 1996 .