Applications of metal-organic frameworks featuring multi-functional sites

[1]  G. Cheng,et al.  Synergistic catalysis of AgPd@ZIF-8 on dehydrogenation of formic acid , 2015 .

[2]  S. Okajima,et al.  Introduction of functionality, selection of topology, and enhancement of gas adsorption in multivariate metal-organic framework-177. , 2015, Journal of the American Chemical Society.

[3]  Banglin Chen,et al.  Immobilization of Ag(i) into a metal-organic framework with -SO3H sites for highly selective olefin-paraffin separation at room temperature. , 2015, Chemical communications.

[4]  C. Tang,et al.  Supramolecular binding and separation of hydrocarbons within a functionalized porous metal-organic framework. , 2015, Nature chemistry.

[5]  R. Krishna,et al.  Highly selective adsorption of ethylene over ethane in a MOF featuring the combination of open metal site and π-complexation. , 2015, Chemical communications.

[6]  I. Pinnau,et al.  Quest for anionic MOF membranes: continuous sod-ZMOF membrane with CO2 adsorption-driven selectivity. , 2015, Journal of the American Chemical Society.

[7]  Junfa Zhu,et al.  Multifunctional Au-Fe3O4@MOF core-shell nanocomposite catalysts with controllable reactivity and magnetic recyclability. , 2015, Nanoscale.

[8]  P. Braunstein,et al.  Multimetallic catalysis based on heterometallic complexes and clusters. , 2015, Chemical reviews.

[9]  Dorina F. Sava,et al.  Zeolite-like metal-organic frameworks (ZMOFs): design, synthesis, and properties. , 2015, Chemical Society reviews.

[10]  Zhijuan Zhang,et al.  High storage capacity and separation selectivity for C2 hydrocarbons over methane in the metal–organic framework Cu–TDPAT , 2014 .

[11]  Zhiyong Guo,et al.  Tandem Catalysis by Palladium Nanoclusters Encapsulated in Metal–Organic Frameworks , 2014 .

[12]  Yuanjing Cui,et al.  Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications , 2014 .

[13]  Zhangjing Zhang,et al.  Perspective of microporous metal–organic frameworks for CO2 capture and separation , 2014 .

[14]  S. Qiu,et al.  Metal-organic framework membranes: from synthesis to separation application. , 2014, Chemical Society reviews.

[15]  G. Qian,et al.  Methane storage in metal-organic frameworks. , 2014, Chemical Society Reviews.

[16]  Li Zhang,et al.  Applications of metal-organic frameworks in heterogeneous supramolecular catalysis. , 2014, Chemical Society reviews.

[17]  Jing Li,et al.  Luminescent metal-organic frameworks for chemical sensing and explosive detection. , 2014, Chemical Society reviews.

[18]  Mohamed Eddaoudi,et al.  A supermolecular building approach for the design and construction of metal-organic frameworks. , 2014, Chemical Society reviews.

[19]  Wen-Yang Gao,et al.  Metal-metalloporphyrin frameworks: a resurging class of functional materials. , 2014, Chemical Society reviews.

[20]  Omar K Farha,et al.  Beyond post-synthesis modification: evolution of metal-organic frameworks via building block replacement. , 2014, Chemical Society reviews.

[21]  Jack D. Evans,et al.  Post-synthetic metalation of metal-organic frameworks. , 2014, Chemical Society reviews.

[22]  G. Shimizu,et al.  MOFs as proton conductors--challenges and opportunities. , 2014, Chemical Society reviews.

[23]  Qiang Xu,et al.  Metal-organic framework composites. , 2014, Chemical Society reviews.

[24]  Qiang Zhang,et al.  Tuning the structure and function of metal-organic frameworks via linker design. , 2014, Chemical Society reviews.

[25]  Shengqian Ma,et al.  Dual functionalization of porous aromatic frameworks as a new platform for heterogeneous cascade catalysis. , 2014, Chemical communications.

[26]  G. Cheng,et al.  AgPd nanoparticles supported on MIL-101 as high performance catalysts for catalytic dehydrogenation of formic acid , 2014 .

[27]  S. Okajima,et al.  Metal-organic frameworks with precisely designed interior for carbon dioxide capture in the presence of water. , 2014, Journal of the American Chemical Society.

[28]  G. Cheng,et al.  Ni-Pt nanoparticles supported on MIL-101 as highly efficient catalysts for hydrogen generation from aqueous alkaline solution of hydrazine for chemical hydrogen storage , 2014 .

[29]  A. J. Blake,et al.  Analysis of high and selective uptake of CO2 in an oxamide-containing {Cu2(OOCR)4}-based metal-organic framework. , 2014, Chemistry.

[30]  Yang-guang Li,et al.  Incorporating polyoxometalates into a porous MOF greatly improves its selective adsorption of cationic dyes. , 2014, Chemistry.

[31]  Qiang Xu,et al.  Highly active AuCo alloy nanoparticles encapsulated in the pores of metal-organic frameworks for hydrolytic dehydrogenation of ammonia borane. , 2014, Chemical communications.

[32]  L. Wojtas,et al.  A porous metal-metalloporphyrin framework featuring high-density active sites for chemical fixation of CO2 under ambient conditions. , 2014, Chemical communications.

[33]  Z. Li,et al.  Noble metals can have different effects on photocatalysis over metal-organic frameworks (MOFs): a case study on M/NH₂-MIL-125(Ti) (M=Pt and Au). , 2014, Chemistry.

[34]  Zhiyu Wang,et al.  Luminescent metal-organic framework films as highly sensitive and fast-response oxygen sensors. , 2014, Journal of the American Chemical Society.

[35]  S. Ghosh,et al.  Two-in-one: inherent anhydrous and water-assisted high proton conduction in a 3D metal-organic framework. , 2014, Angewandte Chemie.

[36]  L. Wojtas,et al.  Crystal engineering of an nbo topology metal-organic framework for chemical fixation of CO2 under ambient conditions. , 2014, Angewandte Chemie.

[37]  Y. Horiuchi,et al.  Development of a novel one-pot reaction system utilizing a bifunctional Zr-based metal–organic framework , 2014 .

[38]  Zhiyong Tang,et al.  Core-shell palladium nanoparticle@metal-organic frameworks as multifunctional catalysts for cascade reactions. , 2014, Journal of the American Chemical Society.

[39]  Zhan Shi,et al.  Metal-cation-directed de novo assembly of a functionalized guest molecule in the nanospace of a metal-organic framework. , 2014, Journal of the American Chemical Society.

[40]  Zhijie Chen,et al.  Microporous Heptazine Functionalized (3,24)-Connected rht-Metal–Organic Framework: Synthesis, Structure, and Gas Sorption Analysis , 2014 .

[41]  J. Long,et al.  Hydrocarbon Separations in Metal–Organic Frameworks , 2014 .

[42]  Y. Horiuchi,et al.  Application of an amino-functionalised metal–organic framework: an approach to a one-pot acid–base reaction , 2013 .

[43]  Shengqian Ma,et al.  A new microporous carbon material synthesized via thermolysis of a porous aromatic framework embedded with an extra carbon source for low-pressure CO2 uptake. , 2013, Chemical communications.

[44]  Ling Wu,et al.  Highly dispersed palladium nanoparticles anchored on UiO-66(NH₂) metal-organic framework as a reusable and dual functional visible-light-driven photocatalyst. , 2013, Nanoscale.

[45]  Michael O’Keeffe,et al.  The Chemistry and Applications of Metal-Organic Frameworks , 2013, Science.

[46]  V. Van Speybroeck,et al.  Mn-salen@MIL101(Al): a heterogeneous, enantioselective catalyst synthesized using a 'bottle around the ship' approach. , 2013, Chemical communications.

[47]  Hong-Cai Zhou,et al.  Interpenetration control in metal–organic frameworks for functional applications , 2013 .

[48]  Teppei Yamada,et al.  Designer coordination polymers: dimensional crossover architectures and proton conduction. , 2013, Chemical Society reviews.

[49]  Min Zhao,et al.  Engineering chiral polyoxometalate hybrid metal-organic frameworks for asymmetric dihydroxylation of olefins. , 2013, Journal of the American Chemical Society.

[50]  M. Hill,et al.  Post-synthetic structural processing in a metal-organic framework material as a mechanism for exceptional CO2/N2 selectivity. , 2013, Journal of the American Chemical Society.

[51]  Qiang Xu,et al.  Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance. , 2013, Journal of the American Chemical Society.

[52]  S. Kitagawa,et al.  Ion conductivity and transport by porous coordination polymers and metal-organic frameworks. , 2013, Accounts of chemical research.

[53]  Hong‐Cai Zhou,et al.  Isostructural metal-organic frameworks assembled from functionalized diisophthalate ligands through a ligand-truncation strategy. , 2013, Chemistry.

[54]  Li-Chiang Lin,et al.  Understanding CO2 dynamics in metal-organic frameworks with open metal sites. , 2013, Angewandte Chemie.

[55]  M. Eddaoudi,et al.  Stepwise transformation of the molecular building blocks in a porphyrin-encapsulating metal-organic material. , 2013, Journal of the American Chemical Society.

[56]  J. Long,et al.  Selective adsorption of ethylene over ethane and propylene over propane in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Zn) , 2013 .

[57]  Alexander J. Blake,et al.  Modulating the packing of [Cu24(isophthalate)24] cuboctahedra in a triazole-containing metal–organic polyhedral framework , 2013 .

[58]  Yongxin Li,et al.  A Rationally Designed Nitrogen-Rich Metal-Organic Framework and Its Exceptionally High CO2 and H2 Uptake Capability , 2013, Scientific Reports.

[59]  H. R. Moon,et al.  Fabrication of metal nanoparticles in metal-organic frameworks. , 2013, Chemical Society reviews.

[60]  S. Kümmel,et al.  Ni/Pd@MIL-101: synergistic catalysis with cavity-conform Ni/Pd nanoparticles. , 2012, Angewandte Chemie.

[61]  P. Cui,et al.  Multipoint interactions enhanced CO2 uptake: a zeolite-like zinc-tetrazole framework with 24-nuclear zinc cages. , 2012, Journal of the American Chemical Society.

[62]  Kimoon Kim,et al.  Tandem catalysis with a bifunctional site-isolated Lewis acid-Brønsted base metal-organic framework, NH2-MIL-101(Al). , 2012, Chemical communications.

[63]  Masakazu Saito,et al.  Visible-Light-Promoted Photocatalytic Hydrogen Production by Using an Amino-Functionalized Ti(IV) Metal–Organic Framework , 2012 .

[64]  M. P. Suh,et al.  Magnesium nanocrystals embedded in a metal-organic framework: hybrid hydrogen storage with synergistic effect on physi- and chemisorption. , 2012, Angewandte Chemie.

[65]  Mohamed Eddaoudi,et al.  Post-synthetic modification of porphyrin-encapsulating metal-organic materials by cooperative addition of inorganic salts to enhance CO2/CH4 selectivity. , 2012, Angewandte Chemie.

[66]  Pengyan Wu,et al.  Photoactive chiral metal-organic frameworks for light-driven asymmetric α-alkylation of aldehydes. , 2012, Journal of the American Chemical Society.

[67]  J. Long,et al.  CO2 dynamics in a metal-organic framework with open metal sites. , 2012, Journal of the American Chemical Society.

[68]  Qiang Xu,et al.  Immobilizing highly catalytically active Pt nanoparticles inside the pores of metal-organic framework: a double solvents approach. , 2012, Journal of the American Chemical Society.

[69]  Shengqian Ma,et al.  Size-selective biocatalysis of myoglobin immobilized into a mesoporous metal-organic framework with hierarchical pore sizes. , 2012, Inorganic chemistry.

[70]  Shengqian Ma,et al.  How can proteins enter the interior of a MOF? Investigation of cytochrome c translocation into a MOF consisting of mesoporous cages with microporous windows. , 2012, Journal of the American Chemical Society.

[71]  R. Krishna,et al.  Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. , 2012, Angewandte Chemie.

[72]  Bartosz A Grzybowski,et al.  Nanoparticle core/shell architectures within MOF crystals synthesized by reaction diffusion. , 2012, Angewandte Chemie.

[73]  H. García,et al.  Catalysis by metal nanoparticles embedded on metal-organic frameworks. , 2012, Chemical Society reviews.

[74]  J. F. Stoddart,et al.  Large-Pore Apertures in a Series of Metal-Organic Frameworks , 2012, Science.

[75]  Guanghua Li,et al.  A strategy toward constructing a bifunctionalized MOF catalyst: post-synthetic modification of MOFs on organic ligands and coordinatively unsaturated metal sites. , 2012, Chemical communications.

[76]  Cheng Wang,et al.  Pt nanoparticles@photoactive metal-organic frameworks: efficient hydrogen evolution via synergistic photoexcitation and electron injection. , 2012, Journal of the American Chemical Society.

[77]  Jeffrey R. Long,et al.  Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc). , 2012, Journal of the American Chemical Society.

[78]  Zhaohui Li,et al.  An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. , 2012, Angewandte Chemie.

[79]  Rajamani Krishna,et al.  Hydrocarbon Separations in a Metal-Organic Framework with Open Iron(II) Coordination Sites , 2012, Science.

[80]  A. Corma,et al.  MOFs as multifunctional catalysts: one-pot synthesis of menthol from citronellal over a bifunctional MIL-101 catalyst. , 2012, Dalton transactions.

[81]  Zhiyong Guo,et al.  A luminescent mixed-lanthanide metal-organic framework thermometer. , 2012, Journal of the American Chemical Society.

[82]  S. Nguyen,et al.  High propene/propane selectivity in isostructural metal-organic frameworks with high densities of open metal sites. , 2012, Angewandte Chemie.

[83]  Gérard Férey,et al.  Metal-organic frameworks in biomedicine. , 2012, Chemical reviews.

[84]  Omar K Farha,et al.  Metal-organic framework materials as chemical sensors. , 2012, Chemical reviews.

[85]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[86]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[87]  Yanfeng Yue,et al.  Luminescent functional metal-organic frameworks. , 2012, Chemical Reviews.

[88]  Michael O'Keeffe,et al.  Deconstructing the crystal structures of metal-organic frameworks and related materials into their underlying nets. , 2012, Chemical reviews.

[89]  Seth M Cohen,et al.  Postsynthetic methods for the functionalization of metal-organic frameworks. , 2012, Chemical reviews.

[90]  Kimoon Kim,et al.  Homochiral metal-organic frameworks for asymmetric heterogeneous catalysis. , 2012, Chemical reviews.

[91]  Jing Li,et al.  Enhanced binding affinity, remarkable selectivity, and high capacity of CO2 by dual functionalization of a rht-type metal-organic framework. , 2012, Angewandte Chemie.

[92]  J. Long,et al.  Introduction to metal-organic frameworks. , 2012, Chemical reviews.

[93]  D. Olson,et al.  Commensurate adsorption of hydrocarbons and alcohols in microporous metal organic frameworks. , 2012, Chemical reviews.

[94]  Mohamed Eddaoudi,et al.  The unique rht-MOF platform, ideal for pinpointing the functionalization and CO2 adsorption relationship. , 2012, Chemical communications.

[95]  S. Kitagawa,et al.  Confinement of mobile histamine in coordination nanochannels for fast proton transfer. , 2011, Angewandte Chemie.

[96]  Rajamani Krishna,et al.  Sulfonate-grafted porous polymer networks for preferential CO2 adsorption at low pressure. , 2011, Journal of the American Chemical Society.

[97]  Demin Liu,et al.  Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. , 2011, Accounts of chemical research.

[98]  H. Furukawa,et al.  A multiunit catalyst with synergistic stability and reactivity: a polyoxometalate-metal organic framework for aerobic decontamination. , 2011, Journal of the American Chemical Society.

[99]  Bong Jin Hong,et al.  Light-harvesting metal-organic frameworks (MOFs): efficient strut-to-strut energy transfer in bodipy and porphyrin-based MOFs. , 2011, Journal of the American Chemical Society.

[100]  N. R. Shiju,et al.  Mesoporous Silica with Site-Isolated Amine and Phosphotungstic Acid Groups: A Solid Catalyst with Tunable Antagonistic Functions for One-Pot Tandem Reactions** , 2011, Angewandte Chemie.

[101]  Jeremiah J Gassensmith,et al.  Strong and reversible binding of carbon dioxide in a green metal-organic framework. , 2011, Journal of the American Chemical Society.

[102]  T. Akita,et al.  Synergistic catalysis of metal-organic framework-immobilized Au-Pd nanoparticles in dehydrogenation of formic acid for chemical hydrogen storage. , 2011, Journal of the American Chemical Society.

[103]  Seth M. Cohen,et al.  Postsynthetic modification at orthogonal reactive sites on mixed, bifunctional metal-organic frameworks. , 2011, Chemical communications.

[104]  Shengqian Ma,et al.  Immobilization of MP-11 into a mesoporous metal-organic framework, MP-11@mesoMOF: a new platform for enzymatic catalysis. , 2011, Journal of the American Chemical Society.

[105]  Rajamani Krishna,et al.  Metal-organic frameworks as adsorbents for hydrogen purification and precombustion carbon dioxide capture. , 2011, Journal of the American Chemical Society.

[106]  S. Nguyen,et al.  Kinetic separation of propene and propane in metal-organic frameworks: controlling diffusion rates in plate-shaped crystals via tuning of pore apertures and crystallite aspect ratios. , 2011, Journal of the American Chemical Society.

[107]  K. Thomas,et al.  Rationally tuned micropores within enantiopure metal-organic frameworks for highly selective separation of acetylene and ethylene. , 2011, Nature communications.

[108]  Rob Ameloot,et al.  An amino-modified Zr-terephthalate metal-organic framework as an acid-base catalyst for cross-aldol condensation. , 2011, Chemical communications.

[109]  Jingui Duan,et al.  Enhanced CO2 binding affinity of a high-uptake rht-type metal-organic framework decorated with acylamide groups. , 2011, Journal of the American Chemical Society.

[110]  Seth M Cohen,et al.  Postsynthetic modification of metal-organic frameworks--a progress report. , 2011, Chemical Society reviews.

[111]  T. Akita,et al.  Synergistic catalysis of Au@Ag core-shell nanoparticles stabilized on metal-organic framework. , 2011, Journal of the American Chemical Society.

[112]  M. P. Suh,et al.  High gas sorption and metal-ion exchange of microporous metal-organic frameworks with incorporated imide groups. , 2010, Chemistry.

[113]  Peter G. Boyd,et al.  Direct Observation and Quantification of CO2 Binding Within an Amine-Functionalized Nanoporous Solid , 2010, Science.

[114]  G. Shimizu,et al.  Facile proton conduction via ordered water molecules in a phosphonate metal-organic framework. , 2010, Journal of the American Chemical Society.

[115]  G. Tendeloo,et al.  Metals@MOFs – Loading MOFs with Metal Nanoparticles for Hybrid Functions , 2010 .

[116]  Huanfeng Jiang,et al.  A highly active heterogeneous palladium catalyst for the Suzuki-Miyaura and Ullmann coupling reactions of aryl chlorides in aqueous media. , 2010, Angewandte Chemie.

[117]  Jie‐Peng Zhang,et al.  Nonclassical active site for enhanced gas sorption in porous coordination polymer. , 2010, Journal of the American Chemical Society.

[118]  Nathaniel L Rosi,et al.  Tuning MOF CO2 adsorption properties via cation exchange. , 2010, Journal of the American Chemical Society.

[119]  Yingwei Li,et al.  Multifunctional catalysis by Pd@MIL-101: one-step synthesis of methyl isobutyl ketone over palladium nanoparticles deposited on a metal-organic framework. , 2010, Chemical communications.

[120]  A. Stepanov,et al.  Hybrid polyoxotungstate/MIL-101 materials: synthesis, characterization, and catalysis of H2O2-based alkene epoxidation. , 2010, Inorganic chemistry.

[121]  G. Férey,et al.  Pd nanoparticles embedded into a metal-organic framework: synthesis, structural characteristics, and hydrogen sorption properties. , 2010, Journal of the American Chemical Society.

[122]  Christian J. Doonan,et al.  Multiple Functional Groups of Varying Ratios in Metal-Organic Frameworks , 2010, Science.

[123]  H. Müller,et al.  In situ synthesis of an imidazolate-4-amide-5-imidate ligand and formation of a microporous zinc-organic framework with H2- and CO2-storage ability. , 2010, Angewandte Chemie.

[124]  Gérard Férey,et al.  Porous metal-organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. , 2010, Nature materials.

[125]  Jihyun An,et al.  High and selective CO2 uptake in a cobalt adeninate metal-organic framework exhibiting pyrimidine- and amino-decorated pores. , 2010, Journal of the American Chemical Society.

[126]  Hong-Cai Zhou,et al.  Gas storage in porous metal-organic frameworks for clean energy applications. , 2010, Chemical communications.

[127]  V. Thangadurai,et al.  Anhydrous proton conduction at 150 °C in a crystalline metal-organic framework. , 2009, Nature chemistry.

[128]  P. Feng,et al.  Multiroute synthesis of porous anionic frameworks and size-tunable extraframework organic cation-controlled gas sorption properties. , 2009, Journal of the American Chemical Society.

[129]  G. Shimizu,et al.  An amine-functionalized metal organic framework for preferential CO(2) adsorption at low pressures. , 2009, Chemical communications.

[130]  T. Akita,et al.  Au@ZIF-8: CO oxidation over gold nanoparticles deposited to metal-organic framework. , 2009, Journal of the American Chemical Society.

[131]  Xiao-Ming Chen,et al.  Supramolecular isomerism in coordination polymers. , 2009, Chemical Society reviews.

[132]  Alex Wagner,et al.  Cooperative acid-base effects with functionalized mesoporous silica nanoparticles: applications in carbon-carbon bond-formation reactions. , 2009, Chemistry.

[133]  Teppei Yamada,et al.  Rational designs for highly proton-conductive metal-organic frameworks. , 2009, Journal of the American Chemical Society.

[134]  R. Fischer,et al.  Simultaneous Gas‐Phase Loading of MOF‐5 with Two Metal Precursors: towards Bimetallics@MOF , 2009 .

[135]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[136]  Seth M. Cohen,et al.  Postsynthetic modification of metal-organic frameworks. , 2009, Chemical Society reviews.

[137]  Wenbin Lin,et al.  Enantioselective catalysis with homochiral metal-organic frameworks. , 2009, Chemical Society reviews.

[138]  M. Allendorf,et al.  Luminescent metal-organic frameworks. , 2009, Chemical Society reviews.

[139]  Mircea Dincă,et al.  Hydrogen storage in metal-organic frameworks. , 2009, Chemical Society reviews.

[140]  Freek Kapteijn,et al.  An amine-functionalized MIL-53 metal-organic framework with large separation power for CO2 and CH4. , 2009, Journal of the American Chemical Society.

[141]  Z. Su,et al.  Highly stable crystalline catalysts based on a microporous metal-organic framework and polyoxometalates. , 2009, Journal of the American Chemical Society.

[142]  M. Eddaoudi,et al.  Zeolite-like metal-organic frameworks as platforms for applications: on metalloporphyrin-based catalysts. , 2008, Journal of the American Chemical Society.

[143]  N. Maksimchuk,et al.  Heterogeneous selective oxidation catalysts based on coordination polymer MIL-101 and transition metal-substituted polyoxometalates , 2008 .

[144]  L. Cronin,et al.  Postsynthetic covalent modification of metal-organic framework (MOF) materials. , 2008, Angewandte Chemie.

[145]  Seth M. Cohen,et al.  Tandem modification of metal-organic frameworks by a postsynthetic approach. , 2008, Angewandte Chemie.

[146]  Young Eun Cheon,et al.  Multifunctional fourfold interpenetrating diamondoid network: gas separation and fabrication of palladium nanoparticles. , 2008, Chemistry.

[147]  R. T. Yang,et al.  Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover. , 2006, Journal of the American Chemical Society.

[148]  H. R. Moon,et al.  A redox-active two-dimensional coordination polymer: preparation of silver and gold nanoparticles and crystal dynamics on guest removal. , 2006, Journal of the American Chemical Society.

[149]  R. T. Yang,et al.  Significantly enhanced hydrogen storage in metal-organic frameworks via spillover. , 2006, Journal of the American Chemical Society.

[150]  C. Serre,et al.  A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area , 2005, Science.

[151]  V. S. Lin,et al.  Cooperative catalysis by general acid and base bifunctionalized mesoporous silica nanospheres. , 2005, Angewandte Chemie.

[152]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[153]  Chi‐Huey Wong,et al.  Synthesis of complex carbohydrates and glycoconjugates: enzyme-based and programmable one-pot strategies. , 2000, Chemical reviews.

[154]  K. Kreuer Proton Conductivity: Materials and Applications , 1996 .

[155]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[156]  Shuhong Yu,et al.  Tiny Pd@Co core-shell nanoparticles confined inside a metal-organic framework for highly efficient catalysis. , 2015, Small.

[157]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.