Colloidal approach to Au-loaded TiO2 thin films with optimized optical sensing properties

TiO2 and Au nanoparticles are synthesized by the colloidal technique and used for nanocomposite thin film preparation. The effect of thermal treatment and organic template presence is analyzed in order to tailor film microstructure. The Au-TiO2 interfaces as well as the overall porosity of the films are analyzed combining structural and morphological characterization along with spectroscopic ellipsometry and surface plasmon spectroscopy analyses. An efficient surrounding of TiO2 nanoparticles around Au colloids is obtained, leading to an extensive noble metal–metal oxide interface, improving functional properties of the films, while keeping a porous structure. Gas sensing tests are performed on these nanocomposites films: reversible sensing dynamics for CO detection are observed with high sensitivity and a correlation between response and recovery times and microstructure is reported.

[1]  D. Hildebrandt,et al.  On-line deactivation of Au/TiO2 for CO oxidation in H2-rich gas streams , 2007 .

[2]  A. Martucci,et al.  Nanostructured Silicon Oxide–Nickel Oxide Sol–Gel Films with Enhanced Optical Carbon Monoxide Gas Sensitivity , 2003 .

[3]  Xiaogang Peng,et al.  Size- and Shape-Controlled Magnetic (Cr, Mn, Fe, Co, Ni) Oxide Nanocrystals via a Simple and General Approach , 2004 .

[4]  V. Bello,et al.  Nanocomposites of titania and hybrid matrix with high refractive index , 2011 .

[5]  Paul Mulvaney,et al.  Mapping the optical properties of CdSe/CdS heterostructure nanocrystals: the effects of core size and shell thickness. , 2009, Journal of the American Chemical Society.

[6]  G. Jellison,et al.  Spectroscopic ellipsometry of thin film and bulk anatase (TiO2) , 2003 .

[7]  D. A. G. Bruggeman Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen , 1935 .

[8]  J. Garche,et al.  Activity, Selectivity, and Long-Term Stability of Different Metal Oxide Supported Gold Catalysts for the Preferential CO Oxidation in H2-Rich Gas , 2001 .

[9]  Paolo Mazzoldi,et al.  Silver nanocrystals in silica by sol-gel processing , 1996 .

[10]  W. Wen,et al.  Preparation and optical characterization of Au/SiO2 composite films with multilayer structure , 2003 .

[11]  R. Caruso,et al.  Gold Nanoparticle Incorporation into Porous Titania Networks Using an Agarose Gel Templating Technique for Photocatalytic Applications , 2008 .

[12]  D. Kohl The role of noble metals in the chemistry of solid-state gas sensors , 1990 .

[13]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[14]  Markus Niederberger,et al.  Surfactant-free nonaqueous synthesis of metal oxide nanostructures. , 2008, Angewandte Chemie.

[15]  Alessandro Martucci,et al.  Gold Nanoparticle‐Doped TiO2 Semiconductor Thin Films: Gas Sensing Properties , 2008 .

[16]  Van Santen,et al.  Low temperature selective oxidation of ammonia to nitrogen on silver-based catalysts , 2003 .

[17]  Minyung Lee,et al.  Microstructure and surface plasmon absorption of sol-gel-prepared Au nanoclusters in TiO2 thin films , 1999 .

[18]  Masanori Ando,et al.  Combined effects of small gold particles on the optical gas sensing by transition metal oxide films , 1997 .

[19]  J. Turkevich,et al.  Coagulation of Colloidal Gold , 2002 .

[20]  Younan Xia,et al.  Crystalline Silver Nanowires by Soft Solution Processing , 2002 .

[21]  R. Behm,et al.  Activity, stability, and deactivation behavior of supported Au/TiO2 catalysts in the CO oxidation and preferential CO oxidation reaction at elevated temperatures , 2009 .

[22]  Younan Xia,et al.  Shape-Controlled Synthesis of Gold and Silver Nanoparticles , 2002, Science.

[23]  H. Komiyama,et al.  Growth mechanism of nanoparticles prepared by radio frequency sputtering , 1997 .

[24]  Wen-Yueh Yu,et al.  Preparation of Au/TiO2 for catalytic preferential oxidation of CO under a hydrogen rich atmosphere at around room temperature. , 2005, Chemical communications.

[25]  S. Overbury,et al.  Transient studies of the mechanisms of CO oxidation over Au/TiO2 using time-resolved FTIR spectroscopy and product analysis , 2005 .

[26]  Daeyeon Lee,et al.  All-nanoparticle thin-film coatings. , 2006, Nano letters.

[27]  G. Stucky,et al.  Benzyl alcohol and transition metal chlorides as a versatile reaction system for the nonaqueous and low-temperature synthesis of crystalline nano-objects with controlled dimensionality. , 2002, Journal of the American Chemical Society.

[28]  M. Anpo,et al.  The Local Structures of Silver(I) Ion Catalysts Anchored within Zeolite Cavities and Their Photocatalytic Reactivities for the Elimination of N2O into N2 and O2 , 2004 .

[29]  C. Liu,et al.  Properties and mechanism study of Ag doped SnO2 thin films as H2S sensors , 1997 .

[30]  Piercarlo Mustarelli,et al.  Synthesis and characterization of SiO2–PEG hybrid materials , 2006 .

[31]  C. E. Tracy,et al.  Electrochromic and chemochromic performance of mesoporous thin-film vanadium oxide , 2003 .

[32]  Luis M Liz-Marzán,et al.  Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[33]  A. Cornet,et al.  Effects of various metal additives on the gas sensing performances of TiO2 nanocrystals obtained from hydrothermal treatments , 2005 .

[34]  K. Prewo,et al.  High-strength silicon carbide fibre-reinforced glass-matrix composites , 1980 .

[35]  Alessandro Martucci,et al.  Gold‐Nanoparticle‐Doped TiO2 Semiconductor Thin Films: Optical Characterization , 2007 .

[36]  L. Liz‐Marzán,et al.  Optical Properties of Thin Films of Au@SiO2 Particles , 2001 .

[37]  R. Chabicovsky,et al.  Optical and electrical H/sub 2/- and NO/sub 2/-sensing properties of Au/In/sub x/O/sub y/N/sub z/ films , 2004, IEEE Sensors Journal.

[38]  H. Kozuka,et al.  Preparation of TiO2 coating films containing Pd fine particles by sol-gel method , 1995 .

[39]  M. Haruta,et al.  Chemical vapor deposition of gold on Al2O3, SiO2, and TiO2 for the oxidation of CO and of H2 , 1998 .

[40]  M. Haruta,et al.  Enhancing effect of gold deposition in the optical detection of reducing gases in air by metal oxide thin films , 1993 .

[41]  Robert R. Alfano,et al.  Optical properties of gold nanocluster composites formed by deep ion implantation in silica , 1993 .

[42]  Nicolae Barsan,et al.  Direct formation of highly porous gas-sensing films by in situ thermophoretic deposition of flame-made Pt/SnO2 nanoparticles , 2006 .

[43]  M. Haruta,et al.  A Kinetic and Adsorption Study of CO Oxidation over Unsupported Fine Gold Powder and over Gold Supported on Titanium Dioxide , 1999 .

[44]  E. Coronado,et al.  The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .

[45]  M. Aramendía,et al.  Photocatalytic degradation of herbicide fluroxypyr in aqueous suspension of TiO2 , 2005 .

[46]  R. Hoffmann,et al.  Metal-ceramic adhesion: quantum mechanical modeling of transition metal-alumina interfaces , 1993 .

[47]  M. Mizuhata,et al.  Preparation and characterization of Au-dispersed TiO2 thin films by a liquid-phase deposition method , 1996 .

[48]  L. Miao,et al.  Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering , 2003 .

[49]  A. Nakao,et al.  Facile fabrication of Ag-Pd bimetallic nanoparticles in ultrathin TiO(2)-gel films: nanoparticle morphology and catalytic activity. , 2003, Journal of the American Chemical Society.