Background: The ongoing COVID-19 pandemic has had a significant impact worldwide, with an incommensurable social and economic burden. The rapid development of safe and protective vaccines against this disease is a global priority. CoronaVac is a vaccine prototype based on inactivated SARS-CoV-2, which has shown promising safety and immunogenicity profiles in pre-clinical studies and phase 1/2 trials in China. To this day, four phase 3 clinical trials are ongoing with CoronaVac in Brazil, Indonesia, Turkey, and Chile. This article reports the safety and immunogenicity results obtained in a subgroup of participants aged 18 years and older enrolled in the phase 3 Clinical Trial held in Chile. Methods: This is a multicenter phase 3 clinical trial. Healthcare workers aged 18 years and older were randomly assigned to receive two doses of CoronaVac or placebo separated by two weeks (0-14). We report preliminary safety results obtained for a subset of 434 participants, and antibody and cell-mediated immunity results obtained in a subset of participants assigned to the immunogenicity arm. The primary and secondary aims of the study include the evaluation of safety parameters and immunogenicity against SARS-CoV-2 after immunization, respectively. This trial is registered at clinicaltrials.gov (NCT04651790). Findings: The recruitment of participants occurred between November 27th, 2020, until January 9th, 2021. 434 participants were enrolled, 397 were 18-59 years old, and 37 were over 60 years old. Of these, 270 were immunized with CoronaVac, and the remaining 164 participants were inoculated with the corresponding placebo. The primary adverse reaction was pain at the injection site, with a higher incidence in the vaccine arm (55.6%) than in the placebo arm (40.0%). Moreover, the incidence of pain at the injection site in the 18-59 years old group was 58.4% as compared to 32.0% in the over 60 years old group. The seroconversion rate for specific anti-S1-RBD IgG was 47.8% for the 18-59 years old group 14 days post immunization (p.i.) and 95.6% 28 and 42 days p.i. For the over 60 years old group, the seroconversion rate was 18.1%, 100%, and 87.5% at 14, 28, and 42 days p.i., respectively. Importantly, we observed a 95.7% seroconversion rate in neutralizing antibodies for the 18-59 years old group 28 and 42 days p.i. The over 60 years old group exhibited seroconversion rates of 90.0% and 100% at 28 and 42 days p.i. Interestingly, we did not observe a significant seroconversion rate of anti-N-SARS-CoV-2 IgG for the 18-59 years old group. For the participants over 60 years old, a modest rate of seroconversion at 42 days p.i. was observed (37.5%). We observed a significant induction of a T cell response characterized by the secretion of IFN-gamma; upon stimulation with Mega Pools of peptides derived from SARS-CoV-2 proteins. No significant differences between the two age groups were observed for cell-mediated immunity. Interpretation: Immunization with CoronaVac in a 0-14 schedule in adults of 18 years and older in the Chilean population is safe and induces specific IgG production against the S1-RBD with neutralizing capacity, as well as the activation of T cells secreting IFN-gamma upon recognition of SARS-CoV-2 antigens. Funding: Ministry of Health of the Chilean Government; Confederation of Production and Commerce, Chile; Consortium of Universities for Vaccines and Therapies against COVID-19, Chile; Millennium Institute on Immunology and Immunotherapy.
[1]
D. Travisany,et al.
Insights into neutralizing antibody responses in individuals exposed to SARS-CoV-2 in Chile
,
2021,
Science Advances.
[2]
K. Chu,et al.
Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial
,
2020,
The Lancet Infectious Diseases.
[3]
P. Dormitzer,et al.
COVID-19 vaccine BNT162b1 elicits human antibody and TH1 T cell responses
,
2020,
Nature.
[4]
F. Krammer.
SARS-CoV-2 vaccines in development
,
2020,
Nature.
[5]
D. Cummings,et al.
Age-specific mortality and immunity patterns of SARS-CoV-2 infection in 45 countries
,
2020,
medRxiv.
[6]
Y. Hu,et al.
Safety, tolerability, and immunogenicity of a recombinant adenovirus type-5 vectored COVID-19 vaccine: a dose-escalation, open-label, non-randomised, first-in-human trial
,
2020,
The Lancet.
[7]
Xiangxi Wang,et al.
Development of an inactivated vaccine candidate for SARS-CoV-2
,
2020,
Science.
[8]
Hyeshik Chang,et al.
The Architecture of SARS-CoV-2 Transcriptome
,
2020,
Cell.
[9]
Kai Zhao,et al.
A pneumonia outbreak associated with a new coronavirus of probable bat origin
,
2020,
Nature.
[10]
Christiane,et al.
World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects.
,
2013,
JAMA.
[11]
I. Kang,et al.
Age-Associated Change in the Frequency of Memory CD4+ T Cells Impairs Long Term CD4+ T Cell Responses to Influenza Vaccine1
,
2004,
The Journal of Immunology.