Multi-environment multi-QTL association mapping identifies disease resistance QTL in barley germplasm from Latin America

[1]  L. Totir,et al.  Predicting the future of plant breeding: complementing empirical evaluation with genetic prediction , 2014, Crop and Pasture Science.

[2]  Gary J. Muehlbauer,et al.  The USDA Barley Core Collection: Genetic Diversity, Population Structure, and Potential for Genome-Wide Association Studies , 2014, PloS one.

[3]  D. Grattapaglia,et al.  Impacts of Population Structure and Analytical Models in Genome-Wide Association Studies of Complex Traits in Forest Trees: A Case Study in Eucalyptus globulus , 2013, PloS one.

[4]  Kevin P. Smith,et al.  Genome-wide association mapping of agronomic traits in relevant barley germplasm in Uruguay , 2013, Molecular Breeding.

[5]  P. Hayes,et al.  Quantitative trait locus analysis of spot blotch and leaf rust resistance in the BCD47 × Baronesse barley mapping population , 2012 .

[6]  Chengdao Li,et al.  PCR markers for selection of adult plant leaf rust resistance in barley (Hordeum vulgare L.) , 2011, Molecular Breeding.

[7]  Stefano Lonardi,et al.  An Improved Consensus Linkage Map of Barley Based on Flow‐Sorted Chromosomes and Single Nucleotide Polymorphism Markers , 2011 .

[8]  P. Hayes,et al.  Association Mapping of Malting Quality Quantitative Trait Loci in Winter Barley: Positive Signals from Small Germplasm Arrays , 2011 .

[9]  R. Bowden,et al.  Molecular mapping of adult-plant race-specific leaf rust resistance gene Lr12 in bread wheat , 2011, Molecular Breeding.

[10]  R. Park,et al.  Mapping Rph20: a gene conferring adult plant resistance to Puccinia hordei in barley , 2011, Theoretical and Applied Genetics.

[11]  Kevin P. Smith,et al.  The Genetics of Winterhardiness in Barley: Perspectives from Genome‐Wide Association Mapping , 2011 .

[12]  Jean-Luc Jannink,et al.  Genomic Selection Accuracy using Multifamily Prediction Models in a Wheat Breeding Program , 2011 .

[13]  Kevin P. Smith,et al.  Association mapping of spot blotch resistance in wild barley , 2010, Molecular Breeding.

[14]  E. Mace,et al.  Mapping spot blotch resistance genes in four barley populations , 2010, Molecular Breeding.

[15]  Stefano Lonardi,et al.  Development and implementation of high-throughput SNP genotyping in barley , 2009, BMC Genomics.

[16]  T. Close,et al.  An Integrated Resource for Barley Linkage Map and Malting Quality QTL Alignment , 2009 .

[17]  Wenbin Li,et al.  QTL in mega-environments: II. Agronomic trait QTL co-localized with seed yield QTL detected in a population derived from a cross of high-yielding adapted × high-yielding exotic soybean lines , 2009, Theoretical and Applied Genetics.

[18]  Jean-Luc Jannink,et al.  The emergence of whole genome association scans in barley. , 2009, Current opinion in plant biology.

[19]  J. Jannink,et al.  Diversity and Mega-Targets of Selection from the Characterization of a Barley Collection , 2009 .

[20]  R. Bernardo Molecular Markers and Selection for Complex Traits in Plants: Learning from the Last 20 Years , 2008 .

[21]  Ky L. Mathews,et al.  Multi-environment QTL mixed models for drought stress adaptation in wheat , 2008, Theoretical and Applied Genetics.

[22]  M. Gore,et al.  Status and Prospects of Association Mapping in Plants , 2008 .

[23]  D. Heckerman,et al.  Efficient Control of Population Structure in Model Organism Association Mapping , 2008, Genetics.

[24]  Hans-Peter Piepho,et al.  Comparison of Mixed-Model Approaches for Association Mapping , 2008, Genetics.

[25]  Z. Pretorius,et al.  Greenhouse and field assessment of adult plant resistance in wheat to Puccinia striiformis f. sp. tritici , 2007, Australasian Plant Pathology.

[26]  F. V. van Eeuwijk,et al.  A Mixed-Model Quantitative Trait Loci (QTL) Analysis for Multiple-Environment Trial Data Using Environmental Covariables for QTL-by-Environment Interactions, With an Example in Maize , 2007, Genetics.

[27]  P. Langridge,et al.  A high density barley microsatellite consensus map with 775 SSR loci , 2007, Theoretical and Applied Genetics.

[28]  M. Malosetti,et al.  Multi-trait multi-environment QTL modelling for drought-stress adaptation in maize , 2007 .

[29]  P. Hayes,et al.  Disequilibrium and association in barley: Thinking outside the glass , 2006, Proceedings of the National Academy of Sciences.

[30]  D. Reich,et al.  Population Structure and Eigenanalysis , 2006, PLoS genetics.

[31]  L. Szabo,et al.  Innate nonhost immunity in barley to different heterologous rust fungi is controlled by sets of resistance genes with different and overlapping specificities. , 2006, Molecular plant-microbe interactions : MPMI.

[32]  G. Orjeda,et al.  Mapping multiple disease resistance genes using a barley mapping population evaluated in Peru, Mexico, and the USA , 2006, Molecular Breeding.

[33]  R. Singh,et al.  Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat , 2006, Theoretical and Applied Genetics.

[34]  D. Reich,et al.  Principal components analysis corrects for stratification in genome-wide association studies , 2006, Nature Genetics.

[35]  P. Hayes,et al.  Molecular mapping of Loci conferring resistance to different pathotypes of the spot blotch pathogen in barley. , 2006, Phytopathology.

[36]  Kevin P. Smith,et al.  Validation of Quantitative Trait Loci for Multiple Disease Resistance in Barley Using Advanced Backcross Lines Developed with a Wild Barley , 2006 .

[37]  M. McMullen,et al.  A unified mixed-model method for association mapping that accounts for multiple levels of relatedness , 2006, Nature Genetics.

[38]  Paul C. Struik,et al.  Statistical models for genotype by environment data: from conventional ANOVA models to eco-physiological QTL models , 2005 .

[39]  P. Hayes,et al.  Comprehensive genetic analyses reveal differential expression of spot blotch resistance in four populations of barley , 2005, Theoretical and Applied Genetics.

[40]  C. Mundt,et al.  Effect of population size on the estimation of QTL: a test using resistance to barley stripe rust , 2005, Theoretical and Applied Genetics.

[41]  J. Li,et al.  Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix , 2005, Heredity.

[42]  J. Léon,et al.  AB-QTL analysis in spring barley. I. Detection of resistance genes against powdery mildew, leaf rust and scald introgressed from wild barley , 2005, Theoretical and Applied Genetics.

[43]  F. V. van Eeuwijk,et al.  Linkage Disequilibrium Mapping of Yield and Yield Stability in Modern Spring Barley Cultivars , 2004, Genetics.

[44]  F. V. van Eeuwijk,et al.  Mixed models including environmental covariables for studying QTL by environment interaction , 2004, Euphytica.

[45]  R. Bernardo,et al.  In silico mapping of quantitative trait loci in maize , 2004, Theoretical and Applied Genetics.

[46]  Robin Thompson,et al.  The analysis of quantitative trait loci in multi-environment trials using a multiplicative mixed model , 2003 .

[47]  C. Mundt,et al.  Pyramiding and Validation of Quantitative Trait Locus (QTL) Alleles Determining Resistance to Barley Stripe Rust: Effects on Adult Plant Resistance , 2003 .

[48]  Joshua A. Udall,et al.  Breeding for Quantitative Traits in Plants , 2003 .

[49]  P. Hayes,et al.  Pyramiding Quantitative Trait Locus (QTL) Alleles Determining Resistance to Barley Stripe Rust , 2003, Crop Science.

[50]  Sigbjørn Lien,et al.  Fine mapping of a quantitative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping. , 2002, Genetics.

[51]  Jonathan Flint,et al.  Simultaneous detection and fine mapping of quantitative trait loci in mice using heterogeneous stocks. , 2002, Genetics.

[52]  D. Rubiales,et al.  Potentially durable resistance mechanisms in plants to specialised fungal pathogens , 2002, Euphytica.

[53]  Robin Thompson,et al.  Analyzing Variety by Environment Data Using Multiplicative Mixed Models and Adjustments for Spatial Field Trend , 2001, Biometrics.

[54]  Y. Benjamini,et al.  Controlling the false discovery rate in behavior genetics research , 2001, Behavioural Brain Research.

[55]  Robin Thompson,et al.  The analysis of quantitative traits in wheat mapping populations , 2001 .

[56]  R. Jansen,et al.  Using complex plant pedigrees to map valuable genes. , 2001, Trends in plant science.

[57]  M. Goddard,et al.  Prediction of total genetic value using genome-wide dense marker maps. , 2001, Genetics.

[58]  H. Piepho,et al.  A mixed-model approach to mapping quantitative trait loci in barley on the basis of multiple environment data. , 2000, Genetics.

[59]  R. Niks,et al.  Identification of QTLs for partial resistance to leaf rust (Puccinia hordei) in barley , 1998, Theoretical and Applied Genetics.

[60]  T. Warkentin,et al.  IDENTIFICATION OF COUPLING AND REPULSION PHASE RAPD MARKERS FOR POWDERY MILDEW RESISTANCE GENE ER-1 IN PEA , 1998 .

[61]  D. Mather,et al.  Regions of the Genome That Affect Grain and Malt Quality in a North American Two-Row Barley Cross , 1997 .

[62]  P. Hayes,et al.  Genetics of seedling and adult plant resistance to net blotch (Pyrenophora teres f. teres) and spot blotch (Cochliobolus sativus) in barley , 1996, Theoretical and Applied Genetics.

[63]  W. Powell,et al.  Detection of quantitative trait loci for agronomic, yield, grain and disease characters in spring barley (Hordeum vulgare L.) , 1995, Theoretical and Applied Genetics.

[64]  D. Laurie,et al.  RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter x spring barley (Hordeum vulgare L.) cross. , 1995, Genome.

[65]  P. Miklas,et al.  Coupling- and repulsion-phase RAPDs for marker-assisted selection of PI 181996 rust resistance in common bean , 1995, Theoretical and Applied Genetics.

[66]  R. Lande,et al.  Efficiency of marker-assisted selection in the improvement of quantitative traits. , 1990, Genetics.

[67]  H. Berg Cold Spring Harbor Symposia on Quantitative Biology.: Vol. LII. Evolution of Catalytic Functions. Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1987, ISBN 0-87969-054-2, xix + 955 pp., US $150.00. , 1989 .

[68]  F. W. Nutter,et al.  Effect of Inoculations with Cochliobolus sativus at Specific Growth Stages on Grain Yield and Quality of Malting Barley 1 , 1985 .

[69]  E. Spjøtvoll,et al.  Plots of P-values to evaluate many tests simultaneously , 1982 .

[70]  J. Zadoks,et al.  The integrated concept of disease resistance: A new view including horizontal and vertical resistance in plants , 1977, Euphytica.

[71]  J. M. Prescott,et al.  A scale for appraising the foliar intensity of wheat diseases , 1975 .

[72]  J. Zadoks A decimal code for the growth stages of cereals , 1974 .

[73]  Walter T. Federer,et al.  Augmented Designs with One-Way Elimination of Heterogeneity , 1961 .

[74]  R. F. Peterson,et al.  A DIAGRAMMATIC SCALE FOR ESTIMATING RUST INTENSITY ON LEAVES AND STEMS OF CEREALS , 1948 .

[75]  Peter J. Bradbury,et al.  Assessment of Power and False Discovery Rate in Genome-Wide Association Studies using the BarleyCAP Germplasm , 2011 .

[76]  Aaron J. Lorenz,et al.  Genomic Selection in Plant Breeding , 2011 .

[77]  W. Wheat Molecular mapping of adult-plant race-specific leaf rust resistance gene Lr12 in bread wheat , 2011 .

[78]  H. Piepho,et al.  Association mapping reveals gene action and interactions in the determination of flowering time in barley , 2008, Theoretical and Applied Genetics.

[79]  M. Boer,et al.  A mixed model QTL analysis for multiple environment trial data using environmental covariables for QTLxE, with an example in maize. , 2007 .

[80]  H. H. Laar,et al.  Scale and Complexity in Plant Systems Research : Gene-Plant-Crop Relations , 2007 .

[81]  K. Gunderson,et al.  Illumina universal bead arrays. , 2006, Methods in enzymology.

[82]  F. Eeuwijk,et al.  Linkage Disequilibrium Mapping of Morphological, Resistance, and Other Agronomically Relevant Traits in Modern Spring Barley Cultivars , 2005, Molecular Breeding.

[83]  S. Germán Breeding Malting Barley under Stress Conditions in South America , 2004 .

[84]  Hans-Joachim Braun,et al.  CIMMYT's approach to breeding for wide adaptation , 2004, Euphytica.

[85]  R. McIntosh,et al.  Pre-emptive breeding to control wheat rusts , 2004, Euphytica.

[86]  D Bentley,et al.  Highly parallel SNP genotyping. , 2003, Cold Spring Harbor symposia on quantitative biology.

[87]  H. Leung,et al.  Mapping quantitative and qualitative disease resistance genes in a doubled haploid population of barley (Hordeum vulgare) , 2000, Theoretical and Applied Genetics.

[88]  R. Singh,et al.  Contribution of adult plant resistance gene Yr18 in protecting wheat from yellow rust , 1996 .

[89]  P. Hayes,et al.  Multiple disease resistance loci and their relationship to agronomic and quality loci in a spring barley population. , 1996 .

[90]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[91]  J. Stavely The modified Cobb scale for estimating bean rust intensity , 1985 .

[92]  H. D. Patterson,et al.  A new class of resolvable incomplete block designs , 1976 .