Synthesis and cytotoxicity of (-)-renieramycin G analogs.

[1]  W. Liu,et al.  Total synthesis of (–)‐MY 336a from L‐tyrosine , 2009 .

[2]  W. Liu,et al.  Total synthesis of (−)-renieramycin G from l-tyrosine , 2009 .

[3]  Juan A. Bueren-Calabuig,et al.  Molecular pharmacology and antitumor activity of Zalypsis in several human cancer cell lines. , 2009, Biochemical pharmacology.

[4]  T. Owa,et al.  Chemistry of renieramycins. Part 8: synthesis and cytotoxicity evaluation of renieramycin M-jorunnamycin A analogues. , 2009, Bioorganic & medicinal chemistry.

[5]  X. Chen,et al.  Zalypsis: a novel marine-derived compound with potent antimyeloma activity that reveals high sensitivity of malignant plasma cells to DNA double-strand breaks. , 2009, Blood.

[6]  S. Danishefsky,et al.  Synthesis and cytotoxic evaluation of some cribrostatin-ecteinascidin analogues. , 2008, Journal of natural products.

[7]  C. Avendaño,et al.  Synthesis and cytotoxic activity of pyrazino[1,2-b]-isoquinolines, 1-(3-isoquinolyl)isoquinolines, and 6,15-iminoisoquino[3,2-b]-3-benzazocines. , 2007, Bioorganic & medicinal chemistry.

[8]  P. Sabbatini,et al.  Evaluation of antitumor properties of novel saframycin analogs in vitro and in vivo. , 2006, Bioorganic & medicinal chemistry letters.

[9]  Robert M. Williams,et al.  Antitumor activity of tetrahydroisoquinoline analogues 3-epi-jorumycin and 3-epi-renieramycin G. , 2006, Bioorganic & medicinal chemistry letters.

[10]  Zhanzhu Liu,et al.  Synthesis and antitumor activity of simplified ecteinascidin-saframycin analogs. , 2006, Bioorganic & medicinal chemistry letters.

[11]  Robert M. Williams,et al.  Asymmetric total syntheses of (-)-jorumycin, (-)-renieramycin G, 3-epi-jorumycin, and 3-epi-renieramycin G. , 2005, Journal of the American Chemical Society.

[12]  S. Danishefsky,et al.  Total synthesis of cribrostatin IV: fine-tuning the character of an amide bond by remote control. , 2005, Journal of the American Chemical Society.

[13]  C. Ong,et al.  Novel design of a pentacyclic scaffold as structural mimic of saframycin A , 2003 .

[14]  S. Schaus,et al.  Transcriptional response pathways in a yeast strain sensitive to saframycin a and a more potent analog: evidence for a common basis of activity. , 2002, Chemistry & biology.

[15]  Robin M. Williams,et al.  Chemistry and biology of the tetrahydroisoquinoline antitumor antibiotics. , 2002, Chemical reviews.

[16]  E. Corey,et al.  Antitumor activity- and gene expression-based profiling of ecteinascidin Et 743 and phthalascidin Pt 650. , 2001, Chemistry & biology.

[17]  A. Plowright,et al.  Synthesis and evaluation of bishydroquinone derivatives of (-)-saframycin A: identification of a versatile molecular template imparting potent antiproliferative activity. , 2001, Journal of the American Chemical Society.

[18]  A. Fontana,et al.  A New Antitumor Isoquinoline Alkaloid from the Marine Nudibranch Jorunna funebris , 2000 .

[19]  S. Schreiber,et al.  Phthalascidin, a synthetic antitumor agent with potency and mode of action comparable to ecteinascidin 743. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[20]  B. Pramanik,et al.  Renieramycins H and I, Two Novel Alkaloids from the Sponge Haliclona cribricutis Dendy. , 1999 .

[21]  B. Davidson,et al.  Renieramycin G, a new alkaloid from the sponge Xestospongia caycedoi , 1992 .

[22]  D. Faulkner,et al.  Renieramycins E and F from the sponge Reniera sp.: reassignment of the stereochemistry of the renieramycins , 1989 .

[23]  D. Faulkner,et al.  Antimicrobial metabolites of the sponge Reniera sp , 1982 .