On the performance of artificial bee colony (ABC) algorithm

Artificial bee colony (ABC) algorithm is an optimization algorithm based on a particular intelligent behaviour of honeybee swarms. This work compares the performance of ABC algorithm with that of differential evolution (DE), particle swarm optimization (PSO) and evolutionary algorithm (EA) for multi-dimensional numeric problems. The simulation results show that the performance of ABC algorithm is comparable to those of the mentioned algorithms and can be efficiently employed to solve engineering problems with high dimensionality.

[1]  Rainer Storn,et al.  System design by constraint adaptation and differential evolution , 1999, IEEE Trans. Evol. Comput..

[2]  Rainer Storn,et al.  Differential evolution design of an IIR-filter , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[3]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[4]  Leandro Nunes de Castro,et al.  Artificial Immune Systems: Part I-Basic Theory and Applications , 1999 .

[5]  Nurhan Karaboga,et al.  Digital IIR Filter Design Using Differential Evolution Algorithm , 2005, EURASIP J. Adv. Signal Process..

[6]  N. Chakraborti,et al.  The Optimal Scheduling of a Reversing Strip Mill: Studies Using Multipopulation Genetic Algorithms and Differential Evolution , 2003 .

[7]  D. Karaboga,et al.  Image segmentation using differential evolution algorithm , 2005, Proceedings of the IEEE 13th Signal Processing and Communications Applications Conference, 2005..

[8]  Gary B. Fogel,et al.  Noisy optimization problems - a particular challenge for differential evolution? , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[9]  D. E. Goldberg,et al.  Optimization and Machine Learning , 2022 .

[10]  Mouloud Koudil,et al.  Using Bees to Solve a Data-Mining Problem Expressed as a Max-Sat One , 2005, IWINAC.

[11]  Yue Zhang,et al.  BeeHive: An Efficient Fault-Tolerant Routing Algorithm Inspired by Honey Bee Behavior , 2004, ANTS Workshop.

[12]  Troy Lee,et al.  How Information-Mapping Patterns Determine Foraging Behaviour of a Honey Bee Colony , 2002, Open Syst. Inf. Dyn..

[13]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[14]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[15]  Marco Dorigo,et al.  From Natural to Artificial Swarm Intelligence , 1999 .

[16]  T. Seeley The Wisdom of the Hive , 1995 .

[17]  James Kennedy,et al.  Particle swarm optimization , 1995, Proceedings of ICNN'95 - International Conference on Neural Networks.

[18]  Panta Lucic,et al.  Transportation modeling: an artificial life approach , 2002, 14th IEEE International Conference on Tools with Artificial Intelligence, 2002. (ICTAI 2002). Proceedings..

[19]  Dervis Karaboga,et al.  A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm , 2007, J. Glob. Optim..

[20]  Dervis Karaboga,et al.  AN IDEA BASED ON HONEY BEE SWARM FOR NUMERICAL OPTIMIZATION , 2005 .

[21]  Valery Tereshko,et al.  Reaction-Diffusion Model of a Honeybee Colony's Foraging Behaviour , 2000, PPSN.

[22]  Xin-She Yang,et al.  Engineering Optimizations via Nature-Inspired Virtual Bee Algorithms , 2005, IWINAC.

[23]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[24]  V. Tereshko,et al.  Collective Decision-Making in Honey Bee Foraging Dynamics , 2005 .

[25]  Dusˇan Teodorovic,et al.  MODELING BY MULTI-AGENT SYSTEMS : A SWARM INTELLIGENCE APPROACH , 2003 .

[26]  R. Storn,et al.  Differential Evolution: A Practical Approach to Global Optimization (Natural Computing Series) , 2005 .

[27]  Nirupam Chakraborti,et al.  A study of the cu clusters using gray-coded genetic algorithms and differential evolution , 2004 .